www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maßtheorie" - Integral einer Menge
Integral einer Menge < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral einer Menge: Tipps zur Berechnung
Status: (Frage) beantwortet Status 
Datum: 11:19 Fr 12.06.2009
Autor: Phorkyas

Aufgabe
Bestimme den folgenden Flächeninhalt
a)[mm]\{(x,y)\in R^2 | 0\leq ax +by\leq 1 \quad und\quad 0\leq cx+dy\leq 1\}[/mm]
b)[mm]\{(x,y)\in R^2| a\leq ye^{-x}\leq b \quad und \quad c\leq ye^x\leq d\} wobei\quad 0

Grüße

Ich hätte gern ein paar Hinweise und Tipps wie man Grundsätzlich an eine solche Aufgabe herangeht.
Bei diesem Beispiel kann man sich überlegen, dass die Menge immer ein Parallelogramm ist und kann dann theroetisch sogar komplett ohne Integrale den Flächeninhalt bestimmen.
Ich wüsste allerdings gerne wie ich eine solche Menge sinnvoll und mit möglichst wenig Aufwand integriere.

Danke für die Hilfe
Phorkyas

/edit:
Ok das erste Beispiel habe ich jetzt hinbekommen. Transformationsformel war die entscheidende Idee.
Alerdings hilft mir für das Zweite Beispiel die Transformationsformel nicht weiter denn:
[mm]\Phi:(x,y)\mapsto(ye^{-x}, ye^x) \Rightarrow d\Phi=\pmat{ -ye^{-x} & e^{-x} \\ ye^x & e^x }\\ \Rightarrow |det(d\Phi^{-1})|=|\frac{1}{-2y}|\\ \Rightarrow vol(M)=\int_{[a,b]\times[c,d]}{\frac{1}{-2y} dx dy}=\frac{1}{-2}(b-a)ln(\frac{d}{c})[/mm]
und das entspricht nicht der Lösung.
Muss also irgendwas falsch sein

        
Bezug
Integral einer Menge: Antwort
Status: (Antwort) fertig Status 
Datum: 13:45 Sa 13.06.2009
Autor: rainerS

Hallo!

> Bestimme den folgenden Flächeninhalt
>  a)[mm]\{(x,y)\in R^2 | 0\leq ax +by\leq 1 \quad und\quad 0\leq cx+dy\leq 1\}[/mm]
>  
> b)[mm]\{(x,y)\in R^2| a\leq ye^{-x}\leq b \quad und \quad c\leq ye^x\leq d\} wobei\quad 0
>  
> Grüße
>  
> Ich hätte gern ein paar Hinweise und Tipps wie man
> Grundsätzlich an eine solche Aufgabe herangeht.
>  Bei diesem Beispiel kann man sich überlegen, dass die
> Menge immer ein Parallelogramm ist und kann dann
> theroetisch sogar komplett ohne Integrale den Flächeninhalt
> bestimmen.
>  Ich wüsste allerdings gerne wie ich eine solche Menge
> sinnvoll und mit möglichst wenig Aufwand integriere.
>  
> Danke für die Hilfe
>  Phorkyas
>  
> /edit:
>  Ok das erste Beispiel habe ich jetzt hinbekommen.
> Transformationsformel war die entscheidende Idee.
>  Alerdings hilft mir für das Zweite Beispiel die
> Transformationsformel nicht weiter denn:
>  [mm]\Phi:(x,y)\mapsto(ye^{-x}, ye^x) \Rightarrow d\Phi=\pmat{ -ye^{-x} & e^{-x} \\ ye^x & e^x }\\ \Rightarrow |det(d\Phi^{-1})|=|\frac{1}{-2y}|\\ \Rightarrow vol(M)=\int_{[a,b]\times[c,d]}{\frac{1}{-2y} dx dy}=\frac{1}{-2}(b-a)ln(\frac{d}{c})[/mm]
>  
> und das entspricht nicht der Lösung.
>  Muss also irgendwas falsch sein

Du hast deine Transformation nicht richtig durchgeführt, weil du alte und neue Koordinaten vermischt hast. Wenn du es etwas sauberer hinschreibst:

[mm]\Phi:(x,y)\mapsto(ye^{-x}, ye^x)=(u,v) \Rightarrow d\Phi=\pmat{ -ye^{-x} & e^{-x} \\ ye^x & e^x }\\ \Rightarrow |det(d\Phi^{-1})|=|\frac{1}{-2y}|\\ \Rightarrow vol(M)=\int_{[a,b]\times[c,d]}{\frac{1}{\red{+}2y} d\red{u} d\red{v}} [/mm]

(Du hast außerdem vergessen, den Betrag zu nehmen, denn y ist immer positiv.)

siehst du, dass du noch y durch u und v ausdrücken musst: [mm] $y=\sqrt{u}\sqrt{v}$: [/mm]

[mm]vol(M)=\int\limits_{[a,b]\times[c,d]} {\frac{1}{2\sqrt{u}\sqrt{v}} du dv} [/mm]

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de