www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Integral einer rat. Funktion
Integral einer rat. Funktion < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral einer rat. Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:14 Di 22.08.2006
Autor: IceCube

Hallo, ich versuche scon ne Weile die auf den ersten Blick recht einfache Funktion
[mm]- \bruch {x^2-y^2 }{(x^2+y^2)^2} [/mm]  zu integrieren.
mein Ansatz war Partialbruchzerlegung
... dann komme ich auf Integrale mit arctan.
Substitution habe ich auch schon versucht
Kann mir jemand sagen, wie ich das Integral einfach ausrechnen kann?
(Integration über x).

Vielen Dank!!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Integral einer rat. Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:31 Di 22.08.2006
Autor: Denny22

Hallo,

die Lösung Deines Integrals ist:

[mm] $\bruch{x}{x^2+y^2}$ [/mm]

Allerdings kann ich Dir jetzt nicht genau sagen, wie man darauf kommt. Ich vermute allerding, dass man mit der "Substitutionsregel" zum gewünschten Ergebnis kommt.
Zudem bezweifel ich, dass man hier die Partialbruchzerlegung anwenden kann, da sich der Nenner nur in

[mm] $(x^2+y^2)*(x^2+y^2)$ [/mm]

zerlegen lässt. Um die Partialbruchzerlegung anwenden zu dürfen, benötigt man jedoch zwei verschiedene Faktoren.

Hoffe, dass ich Dir zumindest ein bisschen weiterhelfen konnte. Habe die Frage noch offen gelassen.

Ciao Denny

Bezug
        
Bezug
Integral einer rat. Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 10:59 Di 22.08.2006
Autor: MatthiasKr

Hallo Icecube,

ich würde zur systematischen lösung des integrals folgendermaßen vorgehen (ich setze mal [mm] $k:=y^2$, [/mm] das Minuszeichen lasse ich weg):

[mm] $\int\frac{x^2-k}{(x^2+k)^2}dx=\int\frac{x^2+k}{(x^2+k)^2}dx- \int\frac{2k}{(x^2+k)^2}dx$ [/mm]

[mm] $=\int\frac{dx}{x^2+k}- \int\frac{2k}{(x^2+k)^2}dx$ [/mm]

das erste integral kannst du jetzt mit dem arcus-tangens in den griff kriegen, für das zweite brauchst du wahrscheinlich eine rekursionsformel für die integrale der art:

[mm] $\int\frac{dx}{(x^2+k)^n}$ [/mm] (sowas wie []hier ganz unten!)

Das geht recht easy mit partieller integration.

Vielleicht geht das ganze auch mit einem Trick noch leichter, das sehe ich aber im moment nicht...

Gruß
Matthias





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de