www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integral mit Betrag und Wurzel
Integral mit Betrag und Wurzel < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral mit Betrag und Wurzel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:13 Di 18.02.2014
Autor: mtr-studi

Aufgabe
Berechnen Sie das folgende uneigentliche Integral, sofern dieses exisitiert.

[mm] \int_0^{2}\frac{1}{\sqrt{|x-1|}}dx [/mm]



Hallo Leute,
wie muss ich hier vorgehen?

Könnte ich das Integral z.B. schreiben als

[mm] \int_0^{1}\frac{1}{\sqrt{x-1}}dx +\int_1^{2}\frac{1}{\sqrt{x-1}}dx [/mm] und es dann einzeln integrieren?


Vielen Dank im Voraus!



        
Bezug
Integral mit Betrag und Wurzel: Antwort
Status: (Antwort) fertig Status 
Datum: 13:20 Di 18.02.2014
Autor: Diophant

Hallo,

> Berechnen Sie das folgende uneigentliche Integral, sofern
> dieses exisitiert.

>

> [mm]\int_0^{2}\frac{1}{\sqrt{|x-1|}}dx[/mm]

>
>

> Hallo Leute,
> wie muss ich hier vorgehen?

>

> Könnte ich das Integral z.B. schreiben als

>

> [mm]\int_0^{1}\frac{1}{\sqrt{x-1}}dx +\int_1^{2}\frac{1}{\sqrt{x-1}}dx[/mm]

Das ist schonmal ein Anfang. Aber zur Berechnung taugt er nicht, denn es sind jetzt zwei uneigentliche Integrale. Sprich: du musst da auf jeden Fall mit einer Grenzertbertrachtung dran. Andererseits könntest du dir aber die Symmetrie des Integranden zu x=1 zunutze machen...

> und es dann einzeln integrieren?

Wie gesagt: einfach nur integrieren sollte man hier nicht tun, auch und gerade dann, wenn es augenscheinlich klappen würde.

Gruß, Diophant

Bezug
                
Bezug
Integral mit Betrag und Wurzel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:34 Di 18.02.2014
Autor: mtr-studi

Hallo,

ich habe das jetzt mal mit den zwei uneigentlichen Integralen und der Grenzwertbetrachtung probiert, aber komme da auf sehr unschöne Ergebnisse.

$ [mm] \int_0^{2}\frac{1}{\sqrt{|x-1|}}dx [/mm] $=$ [mm] \int_0^{1}\frac{1}{\sqrt{x-1}}dx +\int_1^{2}\frac{1}{\sqrt{x-1}}dx [/mm] $


[mm] \int_0^{1}\frac{1}{\sqrt{x-1}}dx=\limes_{a\rightarrow1}\int_0^a \frac{1}{x-1}dx=\limes_{a\rightarrow1}ln(x-1)\mathop{\big|}\limits_0^a=\limes_{a\rightarrow1}ln(a-1)-ln(-1) [/mm]

Der LN ist aber doch gar nicht für negative Zahlen definiert oder ist hier jetzt der betragsmäßige LN gemeint?


Vielen Dank im Voraus!

Bezug
                        
Bezug
Integral mit Betrag und Wurzel: Antwort
Status: (Antwort) fertig Status 
Datum: 13:37 Di 18.02.2014
Autor: Diophant

Hallo,

> Hallo,

>

> ich habe das jetzt mal mit den zwei uneigentlichen
> Integralen und der Grenzwertbetrachtung probiert, aber
> komme da auf sehr unschöne Ergebnisse.

>

> [mm]\int_0^{2}\frac{1}{\sqrt{|x-1|}}dx [/mm]=[mm] \int_0^{1}\frac{1}{\sqrt{x-1}}dx +\int_1^{2}\frac{1}{\sqrt{x-1}}dx[/mm]

>
>

> [mm]\int_0^{1}\frac{1}{\sqrt{x-1}}dx=\limes_{a\rightarrow1}\int_0^a \frac{1}{x-1}dx=\limes_{a\rightarrow1}ln(x-1)\mathop{\big|}\limits_0^a=\limes_{a\rightarrow1}ln(a-1)-ln(-1)[/mm]

>

Das mit den 'unschönen Ergebnissen' ist auch kein Wunder: du hast

- das Wurzelzeichen unterschlagen.

- die Betragsklammern falsch aufgelöst.

Probiers mal mit Korrektur dieser beiden Fehler und du wirst sehen, dass dein Integral existiert.

Gruß, Diophant

Bezug
                                
Bezug
Integral mit Betrag und Wurzel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:12 Di 18.02.2014
Autor: mtr-studi

Hallo,
entschuldige ich bin etwas krank zurzeit.

Also nochmal:
$ [mm] \int_0^{2}\frac{1}{\sqrt{|x-1|}}dx [/mm] $=$ [mm] \int_0^{1}\frac{1}{\sqrt{1-x}}dx +\int_1^{2}\frac{1}{\sqrt{x-1}}dx [/mm] =2+2=4$

[mm] \int_0^{1}\frac{1}{\sqrt{1-x}}dx =\limes_{a\rightarrow 1}\int_0^a \frac{1}{\sqrt{1-x}}dx=\limes_{a\rightarrow 1} (-1)\frac{1}{-\frac{1}{2}+1}(1-x)^{\frac{-1}{2}+1}\mathop{\big|}\limits_0^a=\limes_{a\rightarrow 1}-2\sqrt{1-x}\mathop{\big|}\limits_0^a=\limes_{a\rightarrow 1} -2\sqrt{1-a}+2\sqrt{1-0}=2 [/mm]

[mm] \int_1^{2}\frac{1}{\sqrt{x-1}}dx =\limes_{a\rightarrow 1}\int_a^2 \frac{1}{\sqrt{x-1}}dx=\limes_{a\rightarrow 1} \frac{1}{-\frac{1}{2}+1}(1-x)^{\frac{-1}{2}+1}\mathop{\big|}\limits_a^2=\limes_{a\rightarrow 1}2\sqrt{1-x}\mathop{\big|}\limits_a^2=\limes_{a\rightarrow 1} 2\sqrt{2-1}-2\sqrt{a-1}=2 [/mm]


So sollte es richtig sein oder?

Vielen Dank im Voraus!


Bezug
                                        
Bezug
Integral mit Betrag und Wurzel: Antwort
Status: (Antwort) fertig Status 
Datum: 14:18 Di 18.02.2014
Autor: Diophant

Hallo,

> Hallo,
> entschuldige ich bin etwas krank zurzeit.

Willkommen im Club. ;-)

>

> Also nochmal:
> [mm]\int_0^{2}\frac{1}{\sqrt{|x-1|}}dx [/mm]=[mm] \int_0^{1}\frac{1}{\sqrt{1-x}}dx +\int_1^{2}\frac{1}{\sqrt{x-1}}dx =2+2=4[/mm]

>

> [mm]\int_0^{1}\frac{1}{\sqrt{1-x}}dx =\limes_{a\rightarrow 1}\int_0^a \frac{1}{\sqrt{1-x}}dx=\limes_{a\rightarrow 1} (-1)\frac{1}{-\frac{1}{2}+1}(1-x)^{\frac{-1}{2}+1}\mathop{\big|}\limits_0^a=\limes_{a\rightarrow 1}-2\sqrt{1-x}\mathop{\big|}\limits_0^a=\limes_{a\rightarrow 1} -2\sqrt{1-a}+2\sqrt{1-0}=2[/mm]

>

> [mm]\int_1^{2}\frac{1}{\sqrt{x-1}}dx =\limes_{a\rightarrow 1}\int_a^2 \frac{1}{\sqrt{x-1}}dx=\limes_{a\rightarrow 1} \frac{1}{-\frac{1}{2}+1}(1-x)^{\frac{-1}{2}+1}\mathop{\big|}\limits_a^2=\limes_{a\rightarrow 1}2\sqrt{1-x}\mathop{\big|}\limits_a^2=\limes_{a\rightarrow 1} 2\sqrt{2-1}-2\sqrt{a-1}=2[/mm]

>
>

> So sollte es richtig sein oder?

Ja. Jetzt überlege mal, weshalb da beidesmal das gleiche herauskommt, dann darfst du auch sofort

[mm] \int_{0}^{2}{\bruch{dx}{\wurzel{|x-1|}}}=2*\lim_{a\downarrow{1}} \int_{a}^{2}{\bruch{dx}{\wurzel{x-1}}}=...=4 [/mm]

rechnen.

Gruß, Diophant 

 

Bezug
                                                
Bezug
Integral mit Betrag und Wurzel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:24 Di 18.02.2014
Autor: mtr-studi

Das erspart einem natürlich viel Zeit. Der Graph ist also durch den Betrag an der Unstetigkeitsstelle gespiegelt. :-)

Bezug
        
Bezug
Integral mit Betrag und Wurzel: Antwort
Status: (Antwort) fertig Status 
Datum: 13:31 Di 18.02.2014
Autor: fred97


> Berechnen Sie das folgende uneigentliche Integral, sofern
> dieses exisitiert.
>
> [mm]\int_0^{2}\frac{1}{\sqrt{|x-1|}}dx[/mm]
>  
>
> Hallo Leute,
>  wie muss ich hier vorgehen?
>  
> Könnte ich das Integral z.B. schreiben als
>  
> [mm]\int_0^{1}\frac{1}{\sqrt{x-1}}dx +\int_1^{2}\frac{1}{\sqrt{x-1}}dx[/mm]
> und es dann einzeln integrieren?

Ja, aber das erste Integral lautet so:

[mm] \int_0^{1}\frac{1}{\sqrt{1-x}}dx. [/mm]

FRED

>
>
> Vielen Dank im Voraus!
>  
>  


Bezug
                
Bezug
Integral mit Betrag und Wurzel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:35 Di 18.02.2014
Autor: mtr-studi

Ja, das hatte ich total vergessen mit dem Vorzeichenwechsel im negativen Bereich. Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de