www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Finanzmathematik" - Integral nach der oberen / unteren Grenze ableiten
Integral nach der oberen / unteren Grenze ableiten < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral nach der oberen / unteren Grenze ableiten: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 20:18 Mo 09.08.2004
Autor: NY152

Hallo allerseits,

hab schon lange nach einen Mathe Foren gesucht. Und dank Google habe ich euch gefunden. Der erste Eindruck hat mir so gut gefallen, daß ich mich sofort anmeldet habe.

Und schon habe ich mein erstes Problem. Das u.g. Integral möchte ich nach der Zeit t ableiten. Ich hoffe, daß mir einer oder eine, einen Tipp geben kann.

                       [mm]d (-{\integral_{\tau}^{t} f_{t} (s)\, ds}) [/mm]

Danke im voraus.

Gruß
Murat

Ich habe diese Frage in keinem weiteren Forum gestellt

        
Bezug
Integral nach der oberen / unteren Grenze ableiten: Antwort
Status: (Antwort) fertig Status 
Datum: 22:30 Di 10.08.2004
Autor: Gnometech

Gruß!

Das interessante an der Aufgabe ist, dass $f$ selbst von $t$ abhängt. Um die Frage also zu beantworten müßte man wissen, auf welche Weise.

Denn angenommen, $f$ hinge nicht von $t$ ab und $F$ wäre eine Stammfunktion von $f$. Dann folgt aus dem Hauptsatz der Differential- und Integralrechnung:

[mm] $\frac{d}{dt} \int_\tau^t [/mm] f(s) ds = [mm] \frac{d}{dt}(F(t) [/mm] - [mm] F(\tau)) [/mm] = f(t)$.

Für die Funktion [mm] $f_t$ [/mm] mit Stammfunktion [mm] $F_t$ [/mm] folgt analog:

[mm] $\frac{d}{dt} \int_\tau^t f_t(s) [/mm] ds = [mm] \frac{d}{dt}F_t(t) [/mm] - [mm] \drac{d}{dt}F_t(\tau))$ [/mm] Hier muß man also sehr genau schauen, auf welche Weise das [mm] $f_t$ [/mm] von $t$ abhängt und wie sich das auf die Stammfunktion auswirkt...

Lars

Bezug
                
Bezug
Integral nach der oberen / unteren Grenze ableiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:03 Mi 11.08.2004
Autor: NY152

Hallo Lars,

vielen Dank für deine Antwortmail.

> Denn angenommen, [mm]f[/mm] hinge nicht von [mm]t[/mm] ab und [mm]F[/mm] wäre eine
> Stammfunktion von [mm]f[/mm]. Dann folgt aus dem Hauptsatz der
> Differential- und Integralrechnung:
>  
> [mm]\frac{d}{dt} \int_\tau^t f(s) ds = \frac{d}{dt}(F(t) - F(\tau)) = f(t)[/mm].
>  

    klar.  Es gilt ja: F´(t) = f (t)

> Für die Funktion [mm]f_t[/mm] mit Stammfunktion [mm]F_t[/mm] folgt analog:
>  

  [mm]\frac{d}{dt} \int_\tau^t f_t(s) ds = \frac{d}{dt}F_t(t) - \drac{d}{dt}F_t(\tau))[/mm]  (*)

> Hier muß man also sehr genau schauen, auf welche Weise das
> [mm]f_t[/mm] von [mm]t[/mm] abhängt und wie sich das auf die Stammfunktion
> auswirkt...
>  

OK. Angenommen $ [mm] F_t [/mm] $ ist eine Stammfunktion von $ [mm] f_t [/mm] $.
Dann gilt: [mm] \frac{d}{dt}F_t(t) [/mm] = $ [mm] f_t [/mm] (t) $  (klar) und dann sollte doch
         [mm] \drac{d}{dt}F_t(\tau)) [/mm] =  [mm] \integral_{t}^{\tau} d{f_t (s) ds} [/mm] (unklar)
    
Mir ist die zweite Gleichung immer noch unklar.  Es soll folgendes herauskommen:

$ d [mm] (-{\integral_{\tau}^{t} f_{t} (s)\, ds}) [/mm] $ =  $ [mm] f_t [/mm] (t) dt $ -  [mm] \integral_{t}^{\tau} d{f_t (s) ds} [/mm] (**)

Es geht um  ein Zeitstetiges Zinsmodell von HJM, in der man  aus den Anleihepreisen die Forwardzinsen berechnen kann.

Ich sehe nicht, daß  (*) und (**) gleich sind.

Gruß
Murat

Bezug
                        
Bezug
Integral nach der oberen / unteren Grenze ableiten: Antwort
Status: (Antwort) fertig Status 
Datum: 18:18 Mi 11.08.2004
Autor: Stefan

Lieber Murat!

Hier benötigst du die []Regel von Leibniz.

Sie wird in der Finanzmathematik, gerade bei den Zinsmodellen, ständig benötigt, ist aber auch sonst in der Analysis von allergrößter Wichtigkeit. Leider kennen sie i.A. trotzdem nur wenige Studenten.

Liebe Grüße
Stefan





Bezug
                                
Bezug
Integral nach der oberen / unteren Grenze ableiten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:02 Mi 11.08.2004
Autor: NY152

Hallo Stefan!

Danke für deinen Hinweis. Es hat sehr geholfen den Zusammenhang besser  zu verstehen.

Gruß
Murat

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de