www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integral nicht bestimmbar
Integral nicht bestimmbar < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral nicht bestimmbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:11 Mo 06.07.2009
Autor: Marius6d

Aufgabe
Bestimmen Sie den Flächeninhalt zwischen Graph und x-Achse.

f(x) = [mm] x*(x-1)^2 [/mm]

Also wenn man den Graph zeichnet, oder sonst Nullstellen berechnet, weiss man, dass die Fläche zwischen 0 und 1 liegt.

a=0 b=1

Ich schaffe es aber einfach nicht, das Integral zu berechnen.

Denn es ist ja F(b) - F(a)


Durch partielle Integration habe ich auch die richtige Funktion gefunden, nämlich

F(x) = [mm] (0.5x^2*(x-1)^2)-(\bruch{1}{6}x^3*(x-1)^2) [/mm]

Wenn man aber nun ja das Integral berechnen will, dann ergibt sowohl F(b) als auch F(a) = 0. Und 0 * 0 ergibt 0. Wie berechne ich das Integral? Es kommt bei mir immer 0 raus und langsam bin ich mit den Nerven am Ende, sitze jetzt schon 2 Stunden an dieser Aufgabe.


        
Bezug
Integral nicht bestimmbar: Antwort
Status: (Antwort) fertig Status 
Datum: 17:17 Mo 06.07.2009
Autor: schachuzipus

Hallo Marius,

> Bestimmen Sie den Flächeninhalt zwischen Graph und
> x-Achse.
>  
> f(x) = [mm]x*(x-1)^2[/mm]
>  
> Also wenn man den Graph zeichnet, oder sonst Nullstellen
> berechnet, weiss man, dass die Fläche zwischen 0 und 1
> liegt. [ok]
>  
> a=0 b=1
>  
> Ich schaffe es aber einfach nicht, das Integral zu
> berechnen.
>  
> Denn es ist ja F(b) - F(a)
>  
>
> Durch partielle Integration

Puh, viel zu aufwendig ;-)

>  habe ich auch die richtige
> Funktion gefunden, nämlich
>  
> F(x) = [mm](0.5x^2*(x-1)^2)-(\bruch{1}{6}x^3*(x-1)^2)[/mm]

Na, ob das man stimmt?

Rechne mal vor ...

Viel einfacher ist es, zuerst das Binom aufzulösen und auszumultiplizieren:

[mm] $x(x-1)^2=x(x^2-2x+1)=x^3-2x^2+x$ [/mm]

Und das ist doch elementar integrierbar ...

>  
> Wenn man aber nun ja das Integral berechnen will, dann
> ergibt sowohl F(b) als auch F(a) = 0. Und 0 * 0 ergibt 0.
> Wie berechne ich das Integral? Es kommt bei mir immer 0
> raus und langsam bin ich mit den Nerven am Ende, sitze
> jetzt schon 2 Stunden an dieser Aufgabe.
>  


LG

schachuzipus

Bezug
                
Bezug
Integral nicht bestimmbar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:24 Mo 06.07.2009
Autor: Marius6d

AHhhh, schon wieder so viel Zeit verschwendet, ich weiss nicht warum ich immer den schwierigeren Weg wähle :D Aber Danke.


Die erste Teilaufgabe mit der gleichen Funktion habe ich auch mit partielle Integration gemacht, und dort hat es geklappt, deshalb habe ich gar nicht weiter gedacht!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de