www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Integral über einen Graphen
Integral über einen Graphen < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral über einen Graphen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:33 Di 24.06.2008
Autor: phoboid

Aufgabe
Berechnen Sie das Integral
[mm]\int_M \frac{x^2+y^2}{\sqrt{1+4z(x^2+y^2)}}dS[/mm]
über den Graphen [mm]M=\{(x,y,z)\in\mathbb{R}^3 \mid z=x^2y^2, x^2+y^2 \leq 1\}[/mm]

Die Musterlösung gibt als nächsten Schritt an,
dass das obige Integral zu [mm]\int_{B_1(0)} (x^2 + y^2) dx dy[/mm]
wird. Ich habe nur keinen Schimmer, wie man darauf kommt :/
Meine erste Idee war, den Transformationssatz zu verwenden, z.b.
mit [mm]\phi (x,y,z) = (x, y, x^2 y^2)[/mm],
doch leider wird die Determinante von [mm]d\phi[/mm] 0.
Ich bin für jeden Tipp dankbar!

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.matheplanet.com/matheplanet/nuke/html/viewtopic.php?topic=105709

        
Bezug
Integral über einen Graphen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:37 Fr 27.06.2008
Autor: Leopold_Gast

Ist

[mm]M: \ \ (x,y,z) = \varphi(u,v) \ \ \mbox{mit} \ \ (u,v) \in A[/mm]

eine stetig differenzierbare Parameterdarstellung einer Fläche [mm]M[/mm], so gilt definitionsgemäß

[mm]\int_M f(x,y,z)~\mathrm{d} \sigma = \int_A f \left( \varphi(u,v) \right) \cdot \left| \frac{\partial \varphi}{\partial u} \times \frac{\partial \varphi}{\partial v} \right|~\mathrm{d}(u,v)[/mm]

Man setzt dabei [mm]f[/mm] als stetig auf [mm]M[/mm] voraus, und natürlich sollte auf der rechten Seite [mm]A[/mm] ein sinnvoller Integrationsbereich sein. Die senkrechten Striche stehen für die euklidische Norm, das Kreuz für das Vektorprodukt im [mm]\mathbb{R}^3[/mm].
Fasse also einfach die rechte Seite der obigen Gleichung als Definition für die linke Seite auf.

In der konkreten Aufgabe ist [mm]A[/mm] der Einheitskreis:

[mm]A: \ \ u^2 + v^2 \leq 1[/mm]

Jedem [mm](u,v) \in A[/mm] wird nun ein Punkt

[mm](x,y,z) = \varphi(u,v) = (u,v,u^2 v^2)[/mm]

zugeordnet. Diese Punkte [mm](x,y,z)[/mm] bilden eine Fläche im [mm]\mathbb{R}^3[/mm], die sich über dem Einheitskreis [mm]x^2 + y^2 \leq 1[/mm] wellt. Das ist eben gerade der Graph der Funktion [mm](x,y) \mapsto z = x^2 y^2[/mm] (zur Erläuterung siehe unten bei (*)). Stelle dir ein Marmeladenglas vor, das mit einem Tuch oben bespannt ist, welches nicht ganz fest sitzt und daher Wellenlinien bildet.

Nun berechnet man

[mm]\frac{\partial \varphi}{\partial u} = \begin{pmatrix} 1 \\ 0 \\ 2uv^2 \end{pmatrix} \, , \ \ \frac{\partial \varphi}{\partial v} = \begin{pmatrix} 0 \\ 1 \\ 2u^2 v \end{pmatrix}[/mm]

Davon das Kreuzprodukt:

[mm]\frac{\partial \varphi}{\partial u} \times \frac{\partial \varphi}{\partial v} = \begin{pmatrix} -2uv^2 \\ -2u^2 v \\ 1 \end{pmatrix}[/mm]

und sein Betrag:

[mm]\left| \frac{\partial \varphi}{\partial u} \times \frac{\partial \varphi}{\partial v} \right| = \sqrt{4u^2 v^4 + 4u^4 v^2 + 1} = \sqrt{1 + 4u^2 v^2 \left( u^2 + v^2 \right)}[/mm]

Daher gilt gemäß obiger Definition

[mm]\int_M \frac{x^2 + y^2}{\sqrt{1 + 4z \left( x^2 + y^2 \right)}}~\mathrm{d} \sigma = \int \limits_{u^2 + v^2 \leq 1} \frac{u^2 + v^2}{\sqrt{1 + 4u^2 v^2 \left( u^2 + v^2 \right)}} \cdot \sqrt{1 + 4u^2 v^2 \left( u^2 + v^2 \right)}~\mathrm{d}(u,v)[/mm]

[mm]= \int \limits_{u^2 + v^2 \leq 1} \left( u^2 + v^2 \right)~\mathrm{d}(u,v)[/mm]


(*) Wenn dich diese Variablenumbenennungen irritieren, so betrachte das Ganze eine Dimension tiefer. Nimm etwa den Graphen der Funktion [mm]x \mapsto y = x^2[/mm] mit [mm]x \in [-1,1][/mm]. Das ist ein Stück einer Parabel. Wenn du nun diese Parabel als Kurve parametrisieren sollst, kannst du ihre Punkte [mm](x,y)[/mm] so beschreiben:

[mm](x,y) = \varphi(t) = (t,t^2) \ \ \mbox{mit} \ \ t \in[-1,1][/mm]

Dieses [mm]\varphi(t)[/mm] ist eine Parameterdarstellung der Kurve. Mit einer Variablen [mm]t[/mm] parametrisiert man eben eine Kurve, mit zwei Parametern [mm]u,v[/mm] eine Fläche.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de