www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integral umformen
Integral umformen < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral umformen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:18 Di 09.08.2011
Autor: ethernity

Aufgabe
Also es ist eigentlich eine Umformung die Ich grad nicht verstehe.

und [mm] zwar:\integral_{0}^{1}{\bruch{1}{x} cos(\bruch{1}{x}) dx} [/mm] = [mm] \integral_{1}^{\infty}{\bruch{cos x}{x} dx} [/mm]

Wie kommt diese Umformung zustande? Wenn ich mir das mit Subsititution überlege komme ich auf sowas:
[mm] \integral_{0}^{1}{\bruch{1}{x} cos(\bruch{1}{x}) dx} [/mm] = [mm] \limes_{n\rightarrow 0} \integral_{n}^{1}{\bruch{1}{x} cos(\bruch{1}{x}) dx} [/mm] =  [mm] \limes_{n\rightarrow 0} -\integral_{1/n}^{1}{z*cos(z) dz}=\integral_{1}^{\infty}{z*cos(z) dz} [/mm]

Substitution mit z = [mm] \bruch{1}{x}. [/mm]
Dann gilt [mm] \bruch{dz}{dx}=-1/x^2, [/mm] also [mm] dx=-x^2*dz [/mm]

        
Bezug
Integral umformen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:28 Di 09.08.2011
Autor: schachuzipus

Hallo ethernity,


> Also es ist eigentlich eine Umformung die Ich grad nicht
> verstehe.
>  
> und [mm]zwar:\integral_{0}^{1}{\bruch{1}{x} cos(\bruch{1}{x}) dx}[/mm]
> = [mm]\integral_{1}^{\infty}{\bruch{cos x}{x} dx}[/mm]
>  Wie kommt
> diese Umformung zustande? Wenn ich mir das mit
> Subsititution überlege komme ich auf sowas:
> [mm]\integral_{0}^{1}{\bruch{1}{x} cos(\bruch{1}{x}) dx}[/mm] =
> [mm]\limes_{n\rightarrow 0} \integral_{n}^{1}{\bruch{1}{x} cos(\bruch{1}{x}) dx}[/mm]
> =  [mm]\limes_{n\rightarrow 0} -\integral_{1/n}^{1}{z*cos(z) dz}=\integral_{1}^{\infty}{z*cos(z) dz}[/mm]
>  
> Substitution mit z = [mm]\bruch{1}{x}.[/mm]
>  Dann gilt [mm]\bruch{dz}{dx}=-1/x^2,[/mm] also [mm]dx=-x^2*dz[/mm]  

Ja, das ist genau richtig, daher ist die Verwendung der Variable $x$ auch im Integral auf der rechten Seite etwas verwirrend. Besser hätte mal direkt $z$ geschrieben.

Substituiere direkt im Ausgangsintegral, dann bist du schnell bei der rechten Seite.

Anschließend einfach das $z$ in $x$ umbenennen ...



Gruß

schachuzipus


Bezug
                
Bezug
Integral umformen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:31 Di 09.08.2011
Autor: ethernity

Wo ist denn mein fehler?
Ich komm ja auf ein anderes Ergebnis...

Bezug
                        
Bezug
Integral umformen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:38 Di 09.08.2011
Autor: schachuzipus

Hallo nochmal,


> Wo ist denn mein fehler?
>  Ich komm ja auf ein anderes Ergebnis...

wieso?

[mm]z=\frac{1}{x}\Rightarrow dx=-x^2 \ dz[/mm] und [mm]\frac{1}{z}=x[/mm]

Also [mm]\int{\frac{1}{x}\cos(1/x) \ dx}=\int{\frac{1}{x}\cos(z)(-x^2) \ dz}=-\int{x\cos(z) \ dz}=-\int{\frac{\cos(z)}{z} \ dz}[/mm]

Nun noch die Grenzen substituieren:

[mm]x=0\Rightarrow z=\frac{1}{x}=\infty[/mm] und [mm]x=1\Rightarrow z=1[/mm]

Also [mm]\int\limits_{0}^{1}{\frac{1}{x}\cos(1/x) \ dx} \ = \ -\int\limits_{\infty}^{1}{\frac{\cos(z)}{z} \ dz} \ = \ \int\limits_{1}^{\infty}{\frac{\cos(z)}{z} \ dz}[/mm]

Gruß

schachuzipus


Bezug
                                
Bezug
Integral umformen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:41 Di 09.08.2011
Autor: ethernity

Danke habs auch grad gesehen!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de