www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integral unklar
Integral unklar < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral unklar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:25 Di 11.10.2011
Autor: notinX

Aufgabe
Berechnen Sie die Fourier-Transformierte [mm] $F(\omega)$ [/mm] der Funktion:
[mm] $f(x)=\begin{cases} 0 & t<0\\ e^{-\gamma t}e^{i\omega_o t} & t\geq 0\end{cases}$ [/mm]

Hallo,

es geht zwar um Fouriertransformation, aber eigentlich ist mir nur das Integral unklar.
Es ist [mm] $F(\omega)=\frac{1}{2\pi}\int_{-\infty}^{\infty} f(t)e^{-i\omega t}\,\mathrm{d}t$ [/mm]

Also [mm] $F(\omega)=\frac{1}{2\pi}\int_0^\infty e^{(i\omega_0-i\omega-\gamma)t}\,\mathrm{d}t=\left[\frac{1}{2\pi}\cdot\frac{e^{(i\omega_0-i\omega-\gamma)t}}{i\omega_0-i\omega-\gamma}\right]_0^{\infty}$ [/mm]

Rauskommen soll [mm] $\frac{1}{2\pi}\frac{i}{\omega_0-\omega-i\gamma}$ [/mm]

Ich weiß nicht, wie ich die obere Grenze verarbeiten soll...

Gruß,

notinX

        
Bezug
Integral unklar: Antwort
Status: (Antwort) fertig Status 
Datum: 09:30 Di 11.10.2011
Autor: fred97


> Berechnen Sie die Fourier-Transformierte [mm]F(\omega)[/mm] der
> Funktion:
>  [mm]$f(x)=\begin{cases} 0 & t<0\\ e^{-\gamma t}e^{i\omega_o t} & t\geq 0\end{cases}$[/mm]
>  
> Hallo,
>
> es geht zwar um Fouriertransformation, aber eigentlich ist
> mir nur das Integral unklar.
>  Es ist [mm]F(\omega)=\frac{1}{2\pi}\int_{-\infty}^{\infty} f(t)e^{-i\omega t}\,\mathrm{d}t[/mm]
>  
> Also [mm]F(\omega)=\frac{1}{2\pi}\int_0^\infty e^{(i\omega_0-i\omega-\gamma)t}\,\mathrm{d}t=\left[\frac{1}{2\pi}\cdot\frac{e^{(i\omega_0-i\omega-\gamma)t}}{i\omega_0-i\omega-\gamma}\right]_0^{\infty}[/mm]
>
> Rauskommen soll
> [mm]\frac{1}{2\pi}\frac{i}{\omega_0-\omega-i\gamma}[/mm]
>  
> Ich weiß nicht, wie ich die obere Grenze verarbeiten
> soll...
>  

Berechne  [mm] \int_0^a e^{(i\omega_0-i\omega-\gamma)t}\,\mathrm{d}t [/mm]  und lasse dann $a [mm] \to \infty$ [/mm] gehen.

FRED

> Gruß,
>  
> notinX


Bezug
                
Bezug
Integral unklar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:54 Di 11.10.2011
Autor: notinX


> > Berechnen Sie die Fourier-Transformierte [mm]F(\omega)[/mm] der
> > Funktion:
>  >  [mm]$f(x)=\begin{cases} 0 & t<0\\ e^{-\gamma t}e^{i\omega_o t} & t\geq 0\end{cases}$[/mm]
>  
> >  

> > Hallo,
> >
> > es geht zwar um Fouriertransformation, aber eigentlich ist
> > mir nur das Integral unklar.
>  >  Es ist [mm]F(\omega)=\frac{1}{2\pi}\int_{-\infty}^{\infty} f(t)e^{-i\omega t}\,\mathrm{d}t[/mm]
>  
> >  

> > Also [mm]F(\omega)=\frac{1}{2\pi}\int_0^\infty e^{(i\omega_0-i\omega-\gamma)t}\,\mathrm{d}t=\left[\frac{1}{2\pi}\cdot\frac{e^{(i\omega_0-i\omega-\gamma)t}}{i\omega_0-i\omega-\gamma}\right]_0^{\infty}[/mm]
> >
> > Rauskommen soll
> > [mm]\frac{1}{2\pi}\frac{i}{\omega_0-\omega-i\gamma}[/mm]
>  >  
> > Ich weiß nicht, wie ich die obere Grenze verarbeiten
> > soll...
>  >  
>
> Berechne  [mm]\int_0^a e^{(i\omega_0-i\omega-\gamma)t}\,\mathrm{d}t[/mm]
>  und lasse dann [mm]a \to \infty[/mm] gehen.

Das ist klar, aber was ist
[mm] $\lim_{a\to\infty}\frac{1}{2\pi}\cdot\frac{e^{(i\omega_0-i\omega-\gamma)a}}{i\omega_0-i\omega-\gamma}$ [/mm]
?
Dazu muss ich doch wissen, ob [mm] $(i\omega_0-i\omega-\gamma)$ [/mm] größer oder kleiner null ist, aber das wird schwierig mit komplexen Ausdrücken.

>  
> FRED
>  > Gruß,

>  >  
> > notinX
>  


Bezug
                        
Bezug
Integral unklar: Antwort
Status: (Antwort) fertig Status 
Datum: 10:13 Di 11.10.2011
Autor: fred97


> > > Berechnen Sie die Fourier-Transformierte [mm]F(\omega)[/mm] der
> > > Funktion:
>  >  >  [mm]$f(x)=\begin{cases} 0 & t<0\\ e^{-\gamma t}e^{i\omega_o t} & t\geq 0\end{cases}$[/mm]
>  
> >  

> > >  

> > > Hallo,
> > >
> > > es geht zwar um Fouriertransformation, aber eigentlich ist
> > > mir nur das Integral unklar.
>  >  >  Es ist
> [mm]F(\omega)=\frac{1}{2\pi}\int_{-\infty}^{\infty} f(t)e^{-i\omega t}\,\mathrm{d}t[/mm]
>  
> >  

> > >  

> > > Also [mm]F(\omega)=\frac{1}{2\pi}\int_0^\infty e^{(i\omega_0-i\omega-\gamma)t}\,\mathrm{d}t=\left[\frac{1}{2\pi}\cdot\frac{e^{(i\omega_0-i\omega-\gamma)t}}{i\omega_0-i\omega-\gamma}\right]_0^{\infty}[/mm]
> > >
> > > Rauskommen soll
> > > [mm]\frac{1}{2\pi}\frac{i}{\omega_0-\omega-i\gamma}[/mm]
>  >  >  
> > > Ich weiß nicht, wie ich die obere Grenze verarbeiten
> > > soll...
>  >  >  
> >
> > Berechne  [mm]\int_0^a e^{(i\omega_0-i\omega-\gamma)t}\,\mathrm{d}t[/mm]
> >  und lasse dann [mm]a \to \infty[/mm] gehen.

>  
> Das ist klar, aber was ist
>  
> [mm]\lim_{a\to\infty}\frac{1}{2\pi}\cdot\frac{e^{(i\omega_0-i\omega-\gamma)a}}{i\omega_0-i\omega-\gamma}[/mm]
> ?
> Dazu muss ich doch wissen, ob [mm](i\omega_0-i\omega-\gamma)[/mm]
> größer oder kleiner null ist, aber das wird schwierig mit
> komplexen Ausdrücken.

So, so ... ?

Ich nehme doch an, dass [mm] \omega_0, \omega [/mm] und [mm] \gamma [/mm] alle reell sind. Weiter nehme ich an, dass [mm] \gamma>0 [/mm] ist (das ist meist so, in diesem Dunstkreis). Dann haben wir:

            $ [mm] |e^{(i\omega_0-i\omega-\gamma)a}|=|e^{i\omega_0}|*|e^{-i \omega}|*e^{-\gamma* a}=e^{-\gamma* a}$. [/mm]

Und was treibt das für a [mm] \to \infty [/mm] ?

Edit: es muß natürlich so lauten: $ [mm] |e^{(i\omega_0-i\omega-\gamma)a}|=|e^{i\omega_0 a}|\cdot{}|e^{-i \omega a}|\cdot{}e^{-\gamma\cdot{} a}=e^{-\gamma\cdot{} a} [/mm] $

FRED

>  
> >  

> > FRED
>  >  > Gruß,

>  >  >  
> > > notinX
> >  

>  


Bezug
                                
Bezug
Integral unklar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:33 Di 11.10.2011
Autor: notinX


> > > > Berechnen Sie die Fourier-Transformierte [mm]F(\omega)[/mm] der
> > > > Funktion:
>  >  >  >  [mm]$f(x)=\begin{cases} 0 & t<0\\ e^{-\gamma t}e^{i\omega_o t} & t\geq 0\end{cases}$[/mm]
>  
> >  

> > >  

> > > >  

> > > > Hallo,
> > > >
> > > > es geht zwar um Fouriertransformation, aber eigentlich ist
> > > > mir nur das Integral unklar.
>  >  >  >  Es ist
> > [mm]F(\omega)=\frac{1}{2\pi}\int_{-\infty}^{\infty} f(t)e^{-i\omega t}\,\mathrm{d}t[/mm]
>  
> >  

> > >  

> > > >  

> > > > Also [mm]F(\omega)=\frac{1}{2\pi}\int_0^\infty e^{(i\omega_0-i\omega-\gamma)t}\,\mathrm{d}t=\left[\frac{1}{2\pi}\cdot\frac{e^{(i\omega_0-i\omega-\gamma)t}}{i\omega_0-i\omega-\gamma}\right]_0^{\infty}[/mm]
> > > >
> > > > Rauskommen soll
> > > > [mm]\frac{1}{2\pi}\frac{i}{\omega_0-\omega-i\gamma}[/mm]
>  >  >  >  
> > > > Ich weiß nicht, wie ich die obere Grenze verarbeiten
> > > > soll...
>  >  >  >  
> > >
> > > Berechne  [mm]\int_0^a e^{(i\omega_0-i\omega-\gamma)t}\,\mathrm{d}t[/mm]
> > >  und lasse dann [mm]a \to \infty[/mm] gehen.

>  >  
> > Das ist klar, aber was ist
>  >  
> >
> [mm]\lim_{a\to\infty}\frac{1}{2\pi}\cdot\frac{e^{(i\omega_0-i\omega-\gamma)a}}{i\omega_0-i\omega-\gamma}[/mm]
> > ?
> > Dazu muss ich doch wissen, ob [mm](i\omega_0-i\omega-\gamma)[/mm]
> > größer oder kleiner null ist, aber das wird schwierig mit
> > komplexen Ausdrücken.
>  
> So, so ... ?
>  
> Ich nehme doch an, dass [mm]\omega_0, \omega[/mm] und [mm]\gamma[/mm] alle
> reell sind. Weiter nehme ich an, dass [mm]\gamma>0[/mm] ist (das ist
> meist so, in diesem Dunstkreis). Dann haben wir:

Das ist zwar nicht angegeben, aber da stimme ich Dir zu.

>  
> [mm]|e^{(i\omega_0-i\omega-\gamma)a}|=|e^{i\omega_0}|*|e^{-i \omega}|*e^{-\gamma* a}=e^{-\gamma* a}[/mm].

Diese Umformung ist mir nicht klar. Muss es nicht heißen
[mm] $|e^{(i\omega_0-i\omega-\gamma)a}|=|e^{i\omega_0 a}|*|e^{-i \omega a}|*e^{-\gamma* a}=e^{-\gamma* a}$ [/mm]
und wieso kann ich hier einfach den Betrag betrachten?

>  
> Und was treibt das für a [mm]\to \infty[/mm] ?
>  
> FRED
>  >  
> > >  

> > > FRED
>  >  >  > Gruß,

>  >  >  >  
> > > > notinX
> > >  

> >  

>  


Bezug
                                        
Bezug
Integral unklar: Antwort
Status: (Antwort) fertig Status 
Datum: 10:42 Di 11.10.2011
Autor: fred97


> > > > > Berechnen Sie die Fourier-Transformierte [mm]F(\omega)[/mm] der
> > > > > Funktion:
>  >  >  >  >  [mm]$f(x)=\begin{cases} 0 & t<0\\ e^{-\gamma t}e^{i\omega_o t} & t\geq 0\end{cases}$[/mm]
>  
> >  

> > >  

> > > >  

> > > > >  

> > > > > Hallo,
> > > > >
> > > > > es geht zwar um Fouriertransformation, aber eigentlich ist
> > > > > mir nur das Integral unklar.
>  >  >  >  >  Es ist
> > > [mm]F(\omega)=\frac{1}{2\pi}\int_{-\infty}^{\infty} f(t)e^{-i\omega t}\,\mathrm{d}t[/mm]
>  
> >  

> > >  

> > > >  

> > > > >  

> > > > > Also [mm]F(\omega)=\frac{1}{2\pi}\int_0^\infty e^{(i\omega_0-i\omega-\gamma)t}\,\mathrm{d}t=\left[\frac{1}{2\pi}\cdot\frac{e^{(i\omega_0-i\omega-\gamma)t}}{i\omega_0-i\omega-\gamma}\right]_0^{\infty}[/mm]
> > > > >
> > > > > Rauskommen soll
> > > > > [mm]\frac{1}{2\pi}\frac{i}{\omega_0-\omega-i\gamma}[/mm]
>  >  >  >  >  
> > > > > Ich weiß nicht, wie ich die obere Grenze verarbeiten
> > > > > soll...
>  >  >  >  >  
> > > >
> > > > Berechne  [mm]\int_0^a e^{(i\omega_0-i\omega-\gamma)t}\,\mathrm{d}t[/mm]
> > > >  und lasse dann [mm]a \to \infty[/mm] gehen.

>  >  >  
> > > Das ist klar, aber was ist
>  >  >  
> > >
> >
> [mm]\lim_{a\to\infty}\frac{1}{2\pi}\cdot\frac{e^{(i\omega_0-i\omega-\gamma)a}}{i\omega_0-i\omega-\gamma}[/mm]
> > > ?
> > > Dazu muss ich doch wissen, ob [mm](i\omega_0-i\omega-\gamma)[/mm]
> > > größer oder kleiner null ist, aber das wird schwierig mit
> > > komplexen Ausdrücken.
>  >  
> > So, so ... ?
>  >  
> > Ich nehme doch an, dass [mm]\omega_0, \omega[/mm] und [mm]\gamma[/mm] alle
> > reell sind. Weiter nehme ich an, dass [mm]\gamma>0[/mm] ist (das ist
> > meist so, in diesem Dunstkreis). Dann haben wir:
>  
> Das ist zwar nicht angegeben, aber da stimme ich Dir zu.
>  
> >  

> > [mm]|e^{(i\omega_0-i\omega-\gamma)a}|=|e^{i\omega_0}|*|e^{-i \omega}|*e^{-\gamma* a}=e^{-\gamma* a}[/mm].
>  
> Diese Umformung ist mir nicht klar. Muss es nicht heißen
>  [mm]|e^{(i\omega_0-i\omega-\gamma)a}|=|e^{i\omega_0 a}|*|e^{-i \omega a}|*e^{-\gamma* a}=e^{-\gamma* a}[/mm]


Ja, Du hast recht, die a's hab ich verschlampert.


>  
> und wieso kann ich hier einfach den Betrag betrachten?

Es gilt:



     [mm]|e^{(i\omega_0-i\omega-\gamma)a}|=|e^{i\omega_0 a}|*|e^{-i \omega a}|*e^{-\gamma* a}=e^{-\gamma* a} \to 0[/mm]  für a [mm] \to \infty. [/mm]

Damit haben wir:

             [mm] e^{(i\omega_0-i\omega-\gamma)a} \to [/mm] 0 für  [mm] \to \infty. [/mm]

FRED





>  >  
> > Und was treibt das für a [mm]\to \infty[/mm] ?
>  >  
> > FRED
>  >  >  
> > > >  

> > > > FRED
>  >  >  >  > Gruß,

>  >  >  >  >  
> > > > > notinX
> > > >  

> > >  

> >  

>  


Bezug
                                                
Bezug
Integral unklar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:49 Di 11.10.2011
Autor: notinX


> > > > > > Berechnen Sie die Fourier-Transformierte [mm]F(\omega)[/mm] der
> > > > > > Funktion:
>  >  >  >  >  >  [mm]$f(x)=\begin{cases} 0 & t<0\\ e^{-\gamma t}e^{i\omega_o t} & t\geq 0\end{cases}$[/mm]
>  
> >  

> > >  

> > > >  

> > > > >  

> > > > > >  

> > > > > > Hallo,
> > > > > >
> > > > > > es geht zwar um Fouriertransformation, aber eigentlich ist
> > > > > > mir nur das Integral unklar.
>  >  >  >  >  >  Es ist
> > > > [mm]F(\omega)=\frac{1}{2\pi}\int_{-\infty}^{\infty} f(t)e^{-i\omega t}\,\mathrm{d}t[/mm]
>  
> >  

> > >  

> > > >  

> > > > >  

> > > > > >  

> > > > > > Also [mm]F(\omega)=\frac{1}{2\pi}\int_0^\infty e^{(i\omega_0-i\omega-\gamma)t}\,\mathrm{d}t=\left[\frac{1}{2\pi}\cdot\frac{e^{(i\omega_0-i\omega-\gamma)t}}{i\omega_0-i\omega-\gamma}\right]_0^{\infty}[/mm]
> > > > > >
> > > > > > Rauskommen soll
> > > > > > [mm]\frac{1}{2\pi}\frac{i}{\omega_0-\omega-i\gamma}[/mm]
>  >  >  >  >  >  
> > > > > > Ich weiß nicht, wie ich die obere Grenze verarbeiten
> > > > > > soll...
>  >  >  >  >  >  
> > > > >
> > > > > Berechne  [mm]\int_0^a e^{(i\omega_0-i\omega-\gamma)t}\,\mathrm{d}t[/mm]
> > > > >  und lasse dann [mm]a \to \infty[/mm] gehen.

>  >  >  >  
> > > > Das ist klar, aber was ist
>  >  >  >  
> > > >
> > >
> >
> [mm]\lim_{a\to\infty}\frac{1}{2\pi}\cdot\frac{e^{(i\omega_0-i\omega-\gamma)a}}{i\omega_0-i\omega-\gamma}[/mm]
> > > > ?
> > > > Dazu muss ich doch wissen, ob [mm](i\omega_0-i\omega-\gamma)[/mm]
> > > > größer oder kleiner null ist, aber das wird schwierig mit
> > > > komplexen Ausdrücken.
>  >  >  
> > > So, so ... ?
>  >  >  
> > > Ich nehme doch an, dass [mm]\omega_0, \omega[/mm] und [mm]\gamma[/mm] alle
> > > reell sind. Weiter nehme ich an, dass [mm]\gamma>0[/mm] ist (das ist
> > > meist so, in diesem Dunstkreis). Dann haben wir:
>  >  
> > Das ist zwar nicht angegeben, aber da stimme ich Dir zu.
>  >  
> > >  

> > > [mm]|e^{(i\omega_0-i\omega-\gamma)a}|=|e^{i\omega_0}|*|e^{-i \omega}|*e^{-\gamma* a}=e^{-\gamma* a}[/mm].
>  
> >  

> > Diese Umformung ist mir nicht klar. Muss es nicht heißen
>  >  [mm]|e^{(i\omega_0-i\omega-\gamma)a}|=|e^{i\omega_0 a}|*|e^{-i \omega a}|*e^{-\gamma* a}=e^{-\gamma* a}[/mm]
>  
>
> Ja, Du hast recht, die a's hab ich verschlampert.
>  
>
> >  

> > und wieso kann ich hier einfach den Betrag betrachten?
>  
> Es gilt:
>  
>
>
> [mm]|e^{(i\omega_0-i\omega-\gamma)a}|=|e^{i\omega_0 a}|*|e^{-i \omega a}|*e^{-\gamma* a}=e^{-\gamma* a} \to 0[/mm]
>  für a [mm]\to \infty.[/mm]
>  
> Damit haben wir:
>  
> [mm]e^{(i\omega_0-i\omega-\gamma)a} \to[/mm] 0 für  [mm]\to \infty.[/mm]

Ja, das habe ich ja verstanden. Meine Frage war, wieso ich hier zur Grenzwertbestimmung einfach den Betrag betrachten kann. Denn allgemein gilt ja nicht [mm] $\lim_{x\to x_0}f(x)=\lim_{x\to x_0}|f(x)|$ [/mm]

>  
> FRED
>  
>
>
>
>
> >  >  

> > > Und was treibt das für a [mm]\to \infty[/mm] ?
>  >  >  
> > > FRED
>  >  >  >  
> > > > >  

> > > > > FRED
>  >  >  >  >  > Gruß,

>  >  >  >  >  >  
> > > > > > notinX
> > > > >  

> > > >  

> > >  

> >  

>  


Bezug
                                                        
Bezug
Integral unklar: Antwort
Status: (Antwort) fertig Status 
Datum: 10:54 Di 11.10.2011
Autor: fred97


> > > > > > > Berechnen Sie die Fourier-Transformierte [mm]F(\omega)[/mm] der
> > > > > > > Funktion:
>  >  >  >  >  >  >  [mm]$f(x)=\begin{cases} 0 & t<0\\ e^{-\gamma t}e^{i\omega_o t} & t\geq 0\end{cases}$[/mm]
>  
> >  

> > >  

> > > >  

> > > > >  

> > > > > >  

> > > > > > >  

> > > > > > > Hallo,
> > > > > > >
> > > > > > > es geht zwar um Fouriertransformation, aber eigentlich ist
> > > > > > > mir nur das Integral unklar.
>  >  >  >  >  >  >  Es ist
> > > > > [mm]F(\omega)=\frac{1}{2\pi}\int_{-\infty}^{\infty} f(t)e^{-i\omega t}\,\mathrm{d}t[/mm]
>  
> >  

> > >  

> > > >  

> > > > >  

> > > > > >  

> > > > > > >  

> > > > > > > Also [mm]F(\omega)=\frac{1}{2\pi}\int_0^\infty e^{(i\omega_0-i\omega-\gamma)t}\,\mathrm{d}t=\left[\frac{1}{2\pi}\cdot\frac{e^{(i\omega_0-i\omega-\gamma)t}}{i\omega_0-i\omega-\gamma}\right]_0^{\infty}[/mm]
> > > > > > >
> > > > > > > Rauskommen soll
> > > > > > > [mm]\frac{1}{2\pi}\frac{i}{\omega_0-\omega-i\gamma}[/mm]
>  >  >  >  >  >  >  
> > > > > > > Ich weiß nicht, wie ich die obere Grenze verarbeiten
> > > > > > > soll...
>  >  >  >  >  >  >  
> > > > > >
> > > > > > Berechne  [mm]\int_0^a e^{(i\omega_0-i\omega-\gamma)t}\,\mathrm{d}t[/mm]
> > > > > >  und lasse dann [mm]a \to \infty[/mm] gehen.

>  >  >  >  >  
> > > > > Das ist klar, aber was ist
>  >  >  >  >  
> > > > >
> > > >
> > >
> >
> [mm]\lim_{a\to\infty}\frac{1}{2\pi}\cdot\frac{e^{(i\omega_0-i\omega-\gamma)a}}{i\omega_0-i\omega-\gamma}[/mm]
> > > > > ?
> > > > > Dazu muss ich doch wissen, ob [mm](i\omega_0-i\omega-\gamma)[/mm]
> > > > > größer oder kleiner null ist, aber das wird schwierig mit
> > > > > komplexen Ausdrücken.
>  >  >  >  
> > > > So, so ... ?
>  >  >  >  
> > > > Ich nehme doch an, dass [mm]\omega_0, \omega[/mm] und [mm]\gamma[/mm] alle
> > > > reell sind. Weiter nehme ich an, dass [mm]\gamma>0[/mm] ist (das ist
> > > > meist so, in diesem Dunstkreis). Dann haben wir:
>  >  >  
> > > Das ist zwar nicht angegeben, aber da stimme ich Dir zu.
>  >  >  
> > > >  

> > > > [mm]|e^{(i\omega_0-i\omega-\gamma)a}|=|e^{i\omega_0}|*|e^{-i \omega}|*e^{-\gamma* a}=e^{-\gamma* a}[/mm].
>  
> >  

> > >  

> > > Diese Umformung ist mir nicht klar. Muss es nicht heißen
>  >  >  [mm]|e^{(i\omega_0-i\omega-\gamma)a}|=|e^{i\omega_0 a}|*|e^{-i \omega a}|*e^{-\gamma* a}=e^{-\gamma* a}[/mm]
>  
> >  

> >
> > Ja, Du hast recht, die a's hab ich verschlampert.
>  >  
> >
> > >  

> > > und wieso kann ich hier einfach den Betrag betrachten?
>  >  
> > Es gilt:
>  >  
> >
> >
> > [mm]|e^{(i\omega_0-i\omega-\gamma)a}|=|e^{i\omega_0 a}|*|e^{-i \omega a}|*e^{-\gamma* a}=e^{-\gamma* a} \to 0[/mm]
> >  für a [mm]\to \infty.[/mm]

>  >  
> > Damit haben wir:
>  >  
> > [mm]e^{(i\omega_0-i\omega-\gamma)a} \to[/mm] 0 für  [mm]\to \infty.[/mm]
>  
> Ja, das habe ich ja verstanden. Meine Frage war, wieso ich
> hier zur Grenzwertbestimmung einfach den Betrag betrachten
> kann.

Weils damit funktioniert !

> Denn allgemein gilt ja nicht [mm]\lim_{x\to x_0}f(x)=\lim_{x\to x_0}|f(x)|[/mm]

Aber es gilt:

            $f(x) [mm] \to [/mm] 0$ für $x [mm] \to x_0$ \gdw [/mm]   $ |f(x)| [mm] \to [/mm] 0$ für $x [mm] \to x_0$ [/mm]

FRED

>  
> >  

> > FRED
>  >  
> >
> >
> >
> >
> > >  >  

> > > > Und was treibt das für a [mm]\to \infty[/mm] ?
>  >  >  >  
> > > > FRED
>  >  >  >  >  
> > > > > >  

> > > > > > FRED
>  >  >  >  >  >  > Gruß,

>  >  >  >  >  >  >  
> > > > > > > notinX
> > > > > >  

> > > > >  

> > > >  

> > >  

> >  

>  


Bezug
                                                                
Bezug
Integral unklar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:54 Di 11.10.2011
Autor: notinX


> > > > > > > > Berechnen Sie die Fourier-Transformierte [mm]F(\omega)[/mm] der
> > > > > > > > Funktion:
>  >  >  >  >  >  >  >  [mm]$f(x)=\begin{cases} 0 & t<0\\ e^{-\gamma t}e^{i\omega_o t} & t\geq 0\end{cases}$[/mm]
>  
> >  

> > >  

> > > >  

> > > > >  

> > > > > >  

> > > > > > >  

> > > > > > > >  

> > > > > > > > Hallo,
> > > > > > > >
> > > > > > > > es geht zwar um Fouriertransformation, aber eigentlich ist
> > > > > > > > mir nur das Integral unklar.
>  >  >  >  >  >  >  >  Es ist
> > > > > > [mm]F(\omega)=\frac{1}{2\pi}\int_{-\infty}^{\infty} f(t)e^{-i\omega t}\,\mathrm{d}t[/mm]
>  
> >  

> > >  

> > > >  

> > > > >  

> > > > > >  

> > > > > > >  

> > > > > > > >  

> > > > > > > > Also [mm]F(\omega)=\frac{1}{2\pi}\int_0^\infty e^{(i\omega_0-i\omega-\gamma)t}\,\mathrm{d}t=\left[\frac{1}{2\pi}\cdot\frac{e^{(i\omega_0-i\omega-\gamma)t}}{i\omega_0-i\omega-\gamma}\right]_0^{\infty}[/mm]
> > > > > > > >
> > > > > > > > Rauskommen soll
> > > > > > > > [mm]\frac{1}{2\pi}\frac{i}{\omega_0-\omega-i\gamma}[/mm]
>  >  >  >  >  >  >  >  
> > > > > > > > Ich weiß nicht, wie ich die obere Grenze verarbeiten
> > > > > > > > soll...
>  >  >  >  >  >  >  >  
> > > > > > >
> > > > > > > Berechne  [mm]\int_0^a e^{(i\omega_0-i\omega-\gamma)t}\,\mathrm{d}t[/mm]
> > > > > > >  und lasse dann [mm]a \to \infty[/mm] gehen.

>  >  >  >  >  >  
> > > > > > Das ist klar, aber was ist
>  >  >  >  >  >  
> > > > > >
> > > > >
> > > >
> > >
> >
> [mm]\lim_{a\to\infty}\frac{1}{2\pi}\cdot\frac{e^{(i\omega_0-i\omega-\gamma)a}}{i\omega_0-i\omega-\gamma}[/mm]
> > > > > > ?
> > > > > > Dazu muss ich doch wissen, ob [mm](i\omega_0-i\omega-\gamma)[/mm]
> > > > > > größer oder kleiner null ist, aber das wird schwierig mit
> > > > > > komplexen Ausdrücken.
>  >  >  >  >  
> > > > > So, so ... ?
>  >  >  >  >  
> > > > > Ich nehme doch an, dass [mm]\omega_0, \omega[/mm] und [mm]\gamma[/mm] alle
> > > > > reell sind. Weiter nehme ich an, dass [mm]\gamma>0[/mm] ist (das ist
> > > > > meist so, in diesem Dunstkreis). Dann haben wir:
>  >  >  >  
> > > > Das ist zwar nicht angegeben, aber da stimme ich Dir zu.
>  >  >  >  
> > > > >  

> > > > > [mm]|e^{(i\omega_0-i\omega-\gamma)a}|=|e^{i\omega_0}|*|e^{-i \omega}|*e^{-\gamma* a}=e^{-\gamma* a}[/mm].
>  
> >  

> > >  

> > > >  

> > > > Diese Umformung ist mir nicht klar. Muss es nicht heißen
>  >  >  >  [mm]|e^{(i\omega_0-i\omega-\gamma)a}|=|e^{i\omega_0 a}|*|e^{-i \omega a}|*e^{-\gamma* a}=e^{-\gamma* a}[/mm]
>  
> >  

> > >  

> > >
> > > Ja, Du hast recht, die a's hab ich verschlampert.
>  >  >  
> > >
> > > >  

> > > > und wieso kann ich hier einfach den Betrag betrachten?
>  >  >  
> > > Es gilt:
>  >  >  
> > >
> > >
> > > [mm]|e^{(i\omega_0-i\omega-\gamma)a}|=|e^{i\omega_0 a}|*|e^{-i \omega a}|*e^{-\gamma* a}=e^{-\gamma* a} \to 0[/mm]
> > >  für a [mm]\to \infty.[/mm]

>  >  >  
> > > Damit haben wir:
>  >  >  
> > > [mm]e^{(i\omega_0-i\omega-\gamma)a} \to[/mm] 0 für  [mm]\to \infty.[/mm]
>  
> >  

> > Ja, das habe ich ja verstanden. Meine Frage war, wieso ich
> > hier zur Grenzwertbestimmung einfach den Betrag betrachten
> > kann.
>
> Weils damit funktioniert !
>  
> > Denn allgemein gilt ja nicht [mm]\lim_{x\to x_0}f(x)=\lim_{x\to x_0}|f(x)|[/mm]
>  
> Aber es gilt:
>  
> [mm]f(x) \to 0[/mm] für [mm]x \to x_0[/mm]      [mm]\gdw[/mm]    [mm]|f(x)| \to 0[/mm] für [mm]x \to x_0[/mm]
>  

Ok, das akzeptiere ich als Begründung :-)

Gruß,

notinX

> FRED
>  >  
> > >  

> > > FRED
>  >  >  
> > >
> > >
> > >
> > >
> > > >  >  

> > > > > Und was treibt das für a [mm]\to \infty[/mm] ?
>  >  >  >  >  
> > > > > FRED
>  >  >  >  >  >  
> > > > > > >  

> > > > > > > FRED
>  >  >  >  >  >  >  > Gruß,

>  >  >  >  >  >  >  >  
> > > > > > > > notinX
> > > > > > >  

> > > > > >  

> > > > >  

> > > >  

> > >  

> >  

>  


Bezug
                                                                        
Bezug
Integral unklar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:57 Di 11.10.2011
Autor: fred97


> > > > > > > > > Berechnen Sie die Fourier-Transformierte [mm]F(\omega)[/mm] der

  

>
> Ok, das akzeptiere ich als Begründung :-)
>  


Mir fällt ein Stein vom Herzen. Mein Tag ist gerettet.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de