www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integral von log_{p}
Integral von log_{p} < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integral von log_{p}: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:41 Mo 26.10.2009
Autor: Igor1

Hallo,

man soll bestimmen: [mm] \integral_{}^{}{log_{p}(x) dx} [/mm] für p>1.

(1) Frage : Stimmt es , dass [mm] log_{p}(x)= \bruch{ln_{e}(x)}{ln_{e}(p)}. [/mm]

Wenn das stimmt, dann kann man [mm] ln_{e}(p) \integral_{}^{}{ln_{e}(x) dx} [/mm] schreiben. Dieses Integral kann man dann über die partielle Integration lösen.

Auf dem Übungsblatt stand als Hinweis: Nutzen Sie die Substitution
[mm] t=tan(\bruch{x}{2}). [/mm]   (Auf dem Übungsblatt stehen 3  Integrale, die man bestimmen soll.Dieser Hinweis steht nicht genau nach der Aufgabe ( die ich gepostet habe, sondern nach dem dritten Integral). Ich nehme jedoch an, dass der Hinweis sich auf alle 3 Integrale bezieht.

( 2)  Also , muss man nach dem Hinweis mit der Substitution intergrieren?
Wird das einfach sein oder muss man ausser der Substitutionregel noch etwas besonderes beachten ?


Danke und Gruss !
Igor




        
Bezug
Integral von log_{p}: Antwort
Status: (Antwort) fertig Status 
Datum: 21:49 Mo 26.10.2009
Autor: MatheOldie

Hallo Igor,

> (1) Frage : Stimmt es , dass [mm]log_{p}(x)= \bruch{ln_{e}(x)}{ln_{e}(p)}.[/mm]

  

> Wenn das stimmt, dann kann man [mm]ln_{e}(p) \integral_{}^{}{ln_{e}(x) dx}[/mm]
> schreiben. Dieses Integral kann man dann über die
> partielle Integration lösen.

Stimmt beides.
Übrigens schreibt man nur ln(x), in dieser Schreibweise steckt dann die Basis e.

Gruß, MatheOldie



Bezug
                
Bezug
Integral von log_{p}: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:54 Mo 26.10.2009
Autor: Igor1

Hallo MatheOldie ,

Danke für die schnelle Antwort !

Kann man dieses Integral ohne grosse Schwierigkeiten auch durch die Substitution [mm] t=tan(\bruch{x}{2}) [/mm]
lösen ? Oder war der Hinweis nur für die 3 Teilaufgabe gedacht?


nochmal Danke und Gruss !

Gruss

Bezug
                        
Bezug
Integral von log_{p}: Antwort
Status: (Antwort) fertig Status 
Datum: 21:57 Mo 26.10.2009
Autor: MatheOldie

Ich würde hier partiell integrieren, die Substitution scheint mir für diese Funktion sehr unpassend zu sein.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de