www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Integralabschätzung
Integralabschätzung < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralabschätzung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:01 Sa 03.05.2008
Autor: PatrickC

Hallo

Ich habe eine Funktion $V [mm] \in L^{3/2}(\IR^3)$ [/mm] und will prüfen, ob

[mm] $sup_{z \in R^3} \int_{B(z)} |V(x)|^2 [/mm] dx < [mm] \infty$ [/mm]

ist, wobei mit B(z) die Kugel um z mit Radius 1 gemeint ist.

Folgendes ist mein Ansatz: Sei z beliebig, und seien
X die Teilmenge, auf der $V(x) [mm] \leq [/mm] 1$
Y die Teilmenge, auf der $V(x)> 1$ gilt.

[mm] $\int_{B(x)} |V(x)|^2 [/mm] dx = [mm] \int_X |V(x)|^2 [/mm] dx + [mm] \int_Y |V(x)|^2 [/mm] dx$

Somit habe ich das erste Integral schonmal erledigt, da ich das ja durch den Volumeninhalt der Kugel abschätzen kann. Dann also zum zweiten Integral:

[mm] $\int_Y |V(x)|^2 [/mm] dx < [mm] \int_Y |V(x)|^3 [/mm] dx = [mm] \int_Y |V(x)|^{3/2} |V(x)|^{3/2} [/mm] dx =$
[mm] $\int_{\{(x,y) \in Y \times Y | x=y\} } |V(x)|^{3/2} |V(y)|^{3/2} [/mm] dxdy [mm] \leq \int_{Y \times Y} |V(x)|^{3/2} |V(y)|^{3/2} [/mm] dxdy$

ist die letzte Abschätzung zulässig? Wenn ja, dann könnte ich ja sagen, dass das letzte Integral endlich ist und durch die 3/2-Norm ausgedrückt werden kann. Insbesondere ist die Abschätzung unabhängig von z und damit wäre die Aussage gezeigt.

Irgendwie hab ich das Gefühl, dass da ein Fehler drin sein müsste.

Gruß
Patrick


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integralabschätzung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:39 So 04.05.2008
Autor: rainerS

Hallo Patrick!

> Hallo
>  
> Ich habe eine Funktion [mm]V \in L^{3/2}(\IR^3)[/mm] und will
> prüfen, ob
>  
> [mm]sup_{z \in R^3} \int_{B(z)} |V(x)|^2 dx < \infty[/mm]
>  
> ist, wobei mit B(z) die Kugel um z mit Radius 1 gemeint
> ist.
>  
> Folgendes ist mein Ansatz: Sei z beliebig, und seien
>  X die Teilmenge, auf der [mm]V(x) \leq 1[/mm]
>  Y die Teilmenge, auf der [mm]V(x)> 1[/mm] gilt.
>  
> [mm]\int_{B(x)} |V(x)|^2 dx = \int_X |V(x)|^2 dx + \int_Y |V(x)|^2 dx[/mm]
>  
> Somit habe ich das erste Integral schonmal erledigt, da ich
> das ja durch den Volumeninhalt der Kugel abschätzen kann.
> Dann also zum zweiten Integral:

Hmmm, kannst du aus [mm]V \in L^{3/2}(\IR^3)[/mm] nicht ableiten, dass Y beschränkt sein muss? Denn diese Zerlegung muss ja auch für das Integral

[mm] \int_{\IR^3} |V(x)|^{3/2} dx < \infty[/mm]

gelten, und daher auch

[mm]\int_{Y} |V(x)|^{3/2} dx < \infty[/mm]

sein.

> [mm]\int_Y |V(x)|^2 dx < \int_Y |V(x)|^3 dx = \int_Y |V(x)|^{3/2} |V(x)|^{3/2} dx =[/mm]
>  
> [mm]\int_{\{(x,y) \in Y \times Y | x=y\} } |V(x)|^{3/2} |V(y)|^{3/2} dxdy \leq \int_{Y \times Y} |V(x)|^{3/2} |V(y)|^{3/2} dxdy[/mm]
>  
> ist die letzte Abschätzung zulässig?

Ich bin mir nicht sicher, aber darfst du das Produktmass einfach nehmen, ohne vorher gezeigt zu haben, dass das Integral existiert?

Viele Grüße
   Rainer

Bezug
                
Bezug
Integralabschätzung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:43 So 04.05.2008
Autor: PatrickC

Hallo

> Hmmm, kannst du aus [mm]V \in L^{3/2}(\IR^3)[/mm] nicht ableiten,
> dass Y beschränkt sein muss?

Ich hab vielleicht ein bisschen mit meiner Notation geschlampt. Mit Y meine ich

$Y:= [mm] \{ x \in B(z) | V(x)<1 \}$ [/mm]
$X:= [mm] \{ x \in B(z) | V(x)>1 \}$ [/mm]


also ist Y als Teilmenge einer Einheitskugel ohnehin beschränkt.


> Ich bin mir nicht sicher, aber darfst du das Produktmass
> einfach nehmen, ohne vorher gezeigt zu haben, dass das
> Integral existiert?
>  
> Viele Grüße
>     Rainer

Hm, berechtigtes Argument, aber ich könnte ja die andere Richtung einschlagen, und sagen:

[mm] $\int_Y \int_Y |V(x)|^{3/2} [/mm]  dx  [mm] |V(y)|^{3/2} [/mm] dy = [mm] \| [/mm] V [mm] \|_{3/2}^2$ [/mm]

existiert auf jeden Fall. Nach Fubini müsste dann doch auch

$ [mm] \int_{Y \times Y} |\hat{V}(x,y)|^{3/2} [/mm] d(x,y) $

mit [mm] $\hat{V}(x,y) [/mm] = V(x) V(y)$

existieren. Damit müsste auch die Abschätzung erlaubt sein.

Gruß
Patrick

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de