www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Integralaufgabe
Integralaufgabe < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:12 Fr 30.05.2008
Autor: Surfer

Hallo, ich hab ehier folgende Integralaufgabe angefangen zu rechnen, komm aber nicht aufs Ergebnis!

Also die Aufgabe lautet: [mm] \integral_{}^{}{ sinh(x^{2}) x dx} [/mm]

= [mm] \bruch{1}{2} cosh(x^{2} [/mm] -  [mm] \integral_{}^{}{\bruch{1}{2x}cosh(x^{2})*1 dx} [/mm]
=
und dann würde die Sache ja wieder weitergehen, aber ich komme nicht aufs Ergebnis [mm] \bruch{1}{2} cosh(x^{2} [/mm] was ja bereits am Anfang meiner rechnung vorkommt, aber wie fällt das lezte Integral weg durch was?

lg Surfer


        
Bezug
Integralaufgabe: Substitution
Status: (Antwort) fertig Status 
Datum: 16:15 Fr 30.05.2008
Autor: Loddar

Hallo Surfer!


Nix partielle Integration! Substituiere hier $u \ := \ [mm] x^2$ [/mm] .


Gruß
Loddar


Bezug
                
Bezug
Integralaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:23 Fr 30.05.2008
Autor: Surfer

Aber das sieht doch ganz klar aus wie eine partielle Integration! aber die erste Zeile kann ich doch so lassen und nur jetzt im zweiten Integral noch substituieren oder?

lg Surfer

Bezug
                        
Bezug
Integralaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 16:34 Fr 30.05.2008
Autor: schachuzipus

Hallo Surfer,

> Aber das sieht doch ganz klar aus wie eine partielle
> Integration! aber die erste Zeile kann ich doch so lassen
> und nur jetzt im zweiten Integral noch substituieren oder?

Hmm, ich sehe nicht so ganz, wie du auf deine erste Zeile kommst.

Es ist doch [mm] $\int{\underbrace{x}_{=u(x)}\cdot{}\underbrace{\sinh(x^2)}_{=v'(x)} \ dx}$ [/mm] zu berechnen

Das wäre mit partieller Integration [mm] $=u(x)\cdot{}v(x)-\int{u'(x)\cdot{}v(x) \ dx}$ [/mm]

Da stellt sich die Frage, wie du die (/eine) Stammfunktion von [mm] $\sinh(x^2)$ [/mm] gefunden hast

[mm] $\frac{1}{2x}\cdot{}\cosh(x^2)$ [/mm] ist es jedenfalls nicht, leite mal nach Produktregel ab, da kommt im Leben nicht [mm] $\sinh(x^2)$ [/mm] heraus

Also nimm lieber den Substitutionsansatz gem. Loddars Vorschlag
  

>  
> lg Surfer


LG

schachuzipus

Bezug
                                
Bezug
Integralaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:59 Fr 30.05.2008
Autor: Surfer

Kappier ich irgendwie nicht, also ich habe:
[mm] \integral_{}^{}{x*sinh(x^{2}) dx} [/mm]

Wenn ich jetzt substituiere
u:= [mm] x^{2} [/mm] erhalte ich:
[mm] u`=\bruch{du}{dx} [/mm] = [mm] (x^{2})` [/mm] = 2x
-> dx = [mm] \bruch{du}{2x} [/mm]
[mm] \integral_{}^{}{\bruch{du}{2u} } [/mm]
[mm] \integral_{}^{}{ \bruch{1}{2} u^{-1}du} [/mm]

dann würde ich bekommen [mm] \bruch{1}{2}ln x^{2} [/mm]

aber wie beziehe ich den anderen Teil mit ein? kappier nicht ganz wie vorgehen?

lg Surfer


Bezug
                                        
Bezug
Integralaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 22:24 Fr 30.05.2008
Autor: Marcel

Hallo Surfer,

> Kappier ich irgendwie nicht, also ich habe:
>  [mm]\integral_{}^{}{x*sinh(x^{2}) dx}[/mm]
>  
> Wenn ich jetzt substituiere
>  u:= [mm]x^{2}[/mm] erhalte ich:
>  [mm]u'=\bruch{du}{dx}[/mm] = [mm](x^{2})'[/mm] = 2x
>  -> dx = [mm]\bruch{du}{2x}[/mm]

>  [mm]\integral_{}^{}{\bruch{du}{2u} }[/mm]
>  [mm]\integral_{}^{}{ \bruch{1}{2} u^{-1}du}[/mm]
>  
> dann würde ich bekommen [mm]\bruch{1}{2}ln x^{2}[/mm]
>  
> aber wie beziehe ich den anderen Teil mit ein? kappier
> nicht ganz wie vorgehen?

ich kann Deine Rechnung nicht nachvollziehen.

Ich erhalte jedenfalls folgendes:

[mm] $\int x*\sinh(x^2)dx=\frac{1}{2}*\int \sinh(x^2) \underbrace{2xdx}_{=du}=\frac{1}{2}*\int \sinh(u)du$ [/mm]

Für eine Stammfunktion von $u [mm] \mapsto \sinh(u)$ [/mm] zu finden, guckst Du entweder []hier direkt bei Wikipedia (bei "Integrale", wo Du zudem $a:=1$ zu setzen hast) oder guckst noch mal hier (Antwort 2:42 Uhr) nach.
Am Ende dann die Resubstitution [mm] $u=u(x)=x^2$ [/mm] nicht vergessen...

Gruß,
Marcel

Bezug
                                                
Bezug
Integralaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:36 Fr 30.05.2008
Autor: Surfer

Hallo Marcel

kannst du mir zeigen wie du auf den mittleren Teil in deinem Ergebnis kommst
[mm] \frac{1}{2}*\int \sinh(x^2) \underbrace{2xdx}_{=du} [/mm]

> Ich erhalte jedenfalls folgendes:
>  
> [mm]\int x*\sinh(x^2)dx=\frac{1}{2}*\int \sinh(x^2) \underbrace{2xdx}_{=du}=\frac{1}{2}*\int \sinh(u)du[/mm]
>  

also das du ist klar, aber wie auf die 1/2? Bitte kurz zeigen, der rest ist mir dann vollends klar!

lg Surfer

Bezug
                                                        
Bezug
Integralaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 23:24 Fr 30.05.2008
Autor: M.Rex

Hallo

Der Trick ist, dass die 2 im Integral "fehlt"

Also

[mm] \integral x*\sinh(x^2))dx=\integral\red{1}x*\sinh(x^2)dx [/mm]

Du bräuchtest für die weitere Rechnung aber:

[mm] \integral\red{2}x*\sinh(x^2)dx [/mm]

Also füge ich die 2 ein, muss sie aber gleichzeitig wieder "herausnehmen"

Somit ergibt sich:
[mm] \integral x*\sinh(x^2)dx [/mm]
[mm] =\integral\green{2*\bruch{1}{2}}*x*\sinh(x^2)dx [/mm]
[mm] =\bruch{1}{2}*\integral 2x*\sinh(x^2)dx [/mm]
=...

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de