www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integralaufgabe
Integralaufgabe < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralaufgabe: Lösungshilfe
Status: (Frage) beantwortet Status 
Datum: 15:40 Fr 04.02.2011
Autor: Karlomon

Aufgabe
[mm] \integral_{}^{}{5x^{2}/(sin^{2}*(1-x^{3}) dx} [/mm]

[mm] \integral_{}^{}{5x^{2}/(sin^{2}*(1-x^{3}) dx} [/mm]

da komm ich auch nicht weiter

da hab ich substutuiert [mm] U=1-x^3 [/mm]

[mm] \integral_{}^{}{\bruch{5x^{2}}{(sin^{2}(u))}* \bruch{(du)}{(-3x^2)}} [/mm]

[mm] \bruch{-5}{3}\integral_{}^{}{\bruch{du}{sin^{2}(u)}} [/mm]

und jetzt weiß ich nicht weiter


        
Bezug
Integralaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 15:52 Fr 04.02.2011
Autor: abakus


> [mm]\integral_{}^{}{5x^{2}/(sin^{2}*(1-x^{3}) dx}[/mm]
>  
> [mm]\integral_{}^{}{5x^{2}/(sin^{2}*(1-x^{3}) dx}[/mm]
>  
> da komm ich auch nicht weiter
>  
> da hab ich substutuiert [mm]U=1-x^3[/mm]
>  
> [mm]\integral_{}^{}{\bruch{5x^{2}}{(sin^{2}(u))}* \bruch{(du)}{(-3x^2)}}[/mm]
>  
> [mm]\bruch{-5}{3}\integral_{}^{}{\bruch{du}{sin^{2}(u)}}[/mm]

= [mm]\bruch{-5}{3}\integral_{}^{}{\bruch{(sin^2(u)+cos^2(u))du}{sin^{2}(u)}}[/mm]
Gruß Abakus

>  
> und jetzt weiß ich nicht weiter
>  


Bezug
                
Bezug
Integralaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:59 Fr 04.02.2011
Autor: Karlomon

klar, das war mir klar ok. aber bringt mich nun auch nicht wirklich weiter

Bezug
                        
Bezug
Integralaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:05 Fr 04.02.2011
Autor: Karlomon

oder doch?

[mm] \bruch{-5}{3}\integral_{}^{}{1} +\integral_{}^{}{\bruch{cos^{2}(u)}{sin^{2}(u)} du} [/mm]


[mm] =\bruch{-5}{3}*(x +ln|sin^{2}(u)|)+C [/mm]

Bezug
                                
Bezug
Integralaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 16:35 Fr 04.02.2011
Autor: MathePower

Hallo Karlomon,

> oder doch?
>  
> [mm]\bruch{-5}{3}\integral_{}^{}{1} +\integral_{}^{}{\bruch{cos^{2}(u)}{sin^{2}(u)} du}[/mm]
>  
>
> [mm]=\bruch{-5}{3}*(x +ln|sin^{2}(u)|)+C[/mm]
>  


Das ist keine Stammfunktion.[notok]


Gruss
MathePower

Bezug
                                        
Bezug
Integralaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:36 Fr 04.02.2011
Autor: Karlomon

ok, wären aber die ^2 nicht da dann wäre sie eine, die ^2 bringen mich durcheinander und ich weiß nicht was ich machen muss

Bezug
                                                
Bezug
Integralaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 17:12 Fr 04.02.2011
Autor: MathePower

Hallo Karlomon,

> ok, wären aber die ^2 nicht da dann wäre sie eine, die ^2
> bringen mich durcheinander und ich weiß nicht was ich
> machen muss


Siehe dazu die Antwort von leduart.


Gruss
MathePower

Bezug
                        
Bezug
Integralaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 16:07 Fr 04.02.2011
Autor: schachuzipus

Hallo Karlomon,


> klar, das war mir klar ok. aber bringt mich nun auch nicht
> wirklich weiter

Das ist ja mal eine sehr genaue Aussage ...

Woran hängt es konkret?

Forme doch den Integranden um.

Da steht doch nix anderes als [mm]\int{(1+\cot^2(u)) \ du}[/mm] ...

Und das ist [mm]-\int{(-1-\cot^2(u)) \ du}[/mm]

Also ...

Gruß

schachuzipus


Bezug
                                
Bezug
Integralaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:26 Fr 04.02.2011
Autor: Karlomon

das ist mir zu schwer. das bekomm ich nicht hin und mit coth. haben wir noch nie gerechnet

Bezug
                                        
Bezug
Integralaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 16:40 Fr 04.02.2011
Autor: leduart

Hallo
vielleicht leitest du mal cotan(x) ab?
gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de