www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Integralberechnung
Integralberechnung < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralberechnung: Ansatz gesucht
Status: (Frage) beantwortet Status 
Datum: 18:44 Mo 01.10.2012
Autor: per

Aufgabe
Bestimmen Sie das folgende Integral: [mm] \integral_{0}^{4}{\bruch{1}{x\wurzel{x}} dx} [/mm]

Übe zur Zeit für eine Nachschreibklausur und komme mit dieser Aufgabe nicht voran. Es scheint mir am Ehesten nach einer Substitution auszusehen, wüsste jedoch nicht, welche Substitution hier Sinn machen würde. Andere Ansätze gehen mir zur Zeit noch völlig abhanden. Wäre für einen Ansatz, bzw. einen Hinweis, eine Idee etc. zumindest recht dankbar! Gruß, Per.

        
Bezug
Integralberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:52 Mo 01.10.2012
Autor: reverend

Hallo per,

das ist gar nicht so kompliziert, wie es aussieht.

> Bestimmen Sie das folgende Integral:
> [mm]\integral_{0}^{4}{\bruch{1}{x\wurzel{x}} dx}[/mm]
>  Übe zur Zeit
> für eine Nachschreibklausur und komme mit dieser Aufgabe
> nicht voran. Es scheint mir am Ehesten nach einer
> Substitution auszusehen, wüsste jedoch nicht, welche
> Substitution hier Sinn machen würde.

Das kannst Du hier auch machen. Setze [mm] u(x)=\wurzel{x}. [/mm]

> Andere Ansätze gehen
> mir zur Zeit noch völlig abhanden. Wäre für einen
> Ansatz, bzw. einen Hinweis, eine Idee etc. zumindest recht
> dankbar!

Alternativ kannst Du hier die Potenzschreibweise wählen.
Es ist ja [mm] \bruch{1}{x\wurzel{x}}=\bruch{1}{x^{\bruch{3}{2}}}=x^{-\bruch{3}{2}} [/mm]
Ab da gilt die gewohnte Potenzregel. Das geht viel schneller.

Grüße
reverend


Bezug
                
Bezug
Integralberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:52 Di 02.10.2012
Autor: per

Ok, dann hätte ich ohne den Einwand Freds, es handele sich dabei um ein uneigentliches Integral, folgendermaßen gerechnet:

[mm] \integral_{0}^{4}{x^{-\bruch{3}{2}} dx} [/mm] = aufleiten = [mm] -\bruch{2}{\wurzel{4}} [/mm] = -1

Da mir während der recht langen Semesterferien beschämenderweise das ein oder andere Wissen zu uneigentlichen Integralen abhanden gekommen ist, werde ich mich wohl hierzu noch ein wenig belesen müssen. Dank euch dennoch schon einmal! Per

Bezug
                        
Bezug
Integralberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:56 Di 02.10.2012
Autor: fred97


> Ok, dann hätte ich ohne den Einwand Freds, es handele sich
> dabei um ein uneigentliches Integral, folgendermaßen
> gerechnet:
>  
> [mm]\integral_{0}^{4}{x^{-\bruch{3}{2}} dx}[/mm] = aufleiten =
> [mm]-\bruch{2}{\wurzel{4}}[/mm] = -1

1. Was Du da gerechnet hast , stimmt nicht.

2. "aufleiten" gibts nicht.

3.  [mm]\integral_{0}^{4}{x^{-\bruch{3}{2}} dx}= \infty[/mm]


>  
> Da mir während der recht langen Semesterferien
> beschämenderweise das ein oder andere Wissen zu
> uneigentlichen Integralen abhanden gekommen ist, werde ich
> mich wohl hierzu noch ein wenig belesen müssen.


4. Mach das.

FRED

Dank euch

> dennoch schon einmal! Per


Bezug
        
Bezug
Integralberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 05:57 Di 02.10.2012
Autor: fred97


> Bestimmen Sie das folgende Integral:
> [mm]\integral_{0}^{4}{\bruch{1}{x\wurzel{x}} dx}[/mm]
>  Übe zur Zeit
> für eine Nachschreibklausur und komme mit dieser Aufgabe
> nicht voran. Es scheint mir am Ehesten nach einer
> Substitution auszusehen, wüsste jedoch nicht, welche
> Substitution hier Sinn machen würde. Andere Ansätze gehen
> mir zur Zeit noch völlig abhanden. Wäre für einen
> Ansatz, bzw. einen Hinweis, eine Idee etc. zumindest recht
> dankbar! Gruß, Per.

[mm] \integral_{0}^{4}{\bruch{1}{x\wurzel{x}} dx} [/mm] ist ein uneigentliches Integral.

Wenn Ihr hattet, dass [mm] \integral_{0}^{4}{\bruch{1}{x^s} dx} [/mm] für s [mm] \ge [/mm] 1 divergiert, mußt Du nichts rechnen.

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de