www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Integrale
Integrale < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:10 Sa 04.02.2006
Autor: nathenatiker

Aufgabe
Geben Sie für folgende Funktionen je eine Stammfunktion auf dem jeweiligen Definitionsbereich an (Herleitung oder Beweis):
1) [mm] x^{2}*e^{a*x} [/mm]

2)  [mm] \bruch{1}{x*ln(x)} [/mm]

Hallo,

habe bei Aufgabe 1) dass meiner meinung nach auch richige Ergebnis
[mm] e^{a*x}( \bruch{x^{2}}{a}-\bruch{2*x}{a^{2}}+\bruch{2}{a^{3}}) [/mm]
rausbekommen. leider habe ich keine Lösung für 2) gefunden, hab es
mit partieller integration versucht, bin aber auf keine Lösung gekommen?
Wäre dankbar über einen Lösungshinweis.

Meine eigentliche Frage bezieht sich aber auf die Aufgabenstellung:
da steht ja ich soll eine stammfunktion angeben, mit Herleitung oder beweis.
Wie kann ich dann beweisen, dass es eine Stammfunktion ist?oder was ist dementsprechend mit herleitung gemeint, reicht es also, wenn ich bei 1) ausführlich die Stammfunktion mit partieller Integration gezeigt habe??

Freue mich auf jeden Hinweis.

MFG
Nathenathiker

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt

        
Bezug
Integrale: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:29 Sa 04.02.2006
Autor: mushroom

Hallo nathenatiker!

Hänge auch gerade an dieser Aufgabe. Bei der ersten habe ich auch dieses Ergebnis raus. Als "Beweis" habe ich einfach das Ergebnis differenziert.

Bei der zweiten Aufgabe bin ich leider auch noch nicht weiter, kenne zwar das Ergebnis [mm] \ln(\ln(x)), [/mm] aber bekomme [mm] \frac{1}{x\ln(x)} [/mm] nicht integriert.

Gruß
Markus

Bezug
        
Bezug
Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 12:29 Sa 04.02.2006
Autor: Leopold_Gast

[mm]\frac{1}{x \ln{x}} = \frac{\frac{1}{x}}{\ln{x}}[/mm]

Erkennst du hierin das Muster [mm]\frac{u'(x)}{u(x)}[/mm]?

Bezug
                
Bezug
Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:25 Sa 04.02.2006
Autor: nathenatiker

Hallo,

danke für den Tipp, habe jetzt die Lösung,
aber noch mal zurück zu meiner eigentlichen Frage,

reicht es, wenn ich die Stammfunktion gefunden, diese wieder abzuleiten?
ist ed dann wirklich bewiesen?

MFG
nathenatiker

Bezug
                        
Bezug
Integrale: Rechenweg / Zwischenschritte
Status: (Antwort) fertig Status 
Datum: 14:44 Sa 04.02.2006
Autor: Loddar

Hallo nathenatiker,

[willkommenmr] !!


Meines Erachtens reicht es aus, den "Beweis" über die Ableitung zu führen. Aber ich kann mir sehr gut vorstellen, dass hier auch der Rechenweg der Integration bewertet wird, so dass Du dann auch entsprechende Schritte des Rechenweges formulieren solltest (also die doppelte partielle Integration beim ersten Integral, die Substitution beim zweiten).


Gruß
Loddar


Bezug
                                
Bezug
Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:16 Sa 04.02.2006
Autor: nathenatiker

danke für die Hinweise, haben gut geholfen,

ein letztes Problem habe ich noch, bin auf das Integral
[mm] \integral_{a}^{b}{(ln(x))^{n} dx} [/mm] gestoßen,

und weiß leider nicht wie da rangehen soll.
hab alles mögliche mit substitution gemacht, aber ohne erfolg,
wäre über einen hinweis sehr erfreut.

MFG

Nathenatiker

Bezug
                                        
Bezug
Integrale: partielle Integration
Status: (Antwort) fertig Status 
Datum: 16:21 Sa 04.02.2006
Autor: Loddar

Hallo nathenatiker!


Wende hier (mehrfach!) die partielle Integration an (oder stelle eine rekursive Fomrel auf):

[mm]\integral_{}^{}{[\ln(x)]^n \ dx} \ = \ \integral_{}^{}{\red{1}*[\ln(x)]^n \ dx}[/mm]


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de