www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integrale
Integrale < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:32 Do 31.01.2013
Autor: zitrone

Guten Abend!

Ich werde aus zwei Rechnungen einfach nicht schlau..Ich kann einfach nicht nachvollziehen, wieso man diesen Schritt getätigt hat...Könnte sich bitte jmd erbarmen und mir bitte kurz sagen weshalb das so richtig ist?

1)

[mm] \integral_{0}^{2\pi}{sin^2(x) dx}=\integral_{0}^{2\pi}{dx} -\integral_{0}^{2\pi}{sin^2(x) dx} [/mm]
[mm] \integral_{0}^{2\pi}{sin^2(x) dx} [/mm] = [mm] 2\pi [/mm] - [mm] \integral_{0}^{2\pi}{sin^2(x)dx} [/mm]

=> Wieso 2pi? Müsste da eigentlich nichts stehen? Denn hab ich bei dem dx ja kein x davor stehen, für das ich 2pi einsetzen könnte...

2)

[mm] \integral_{-\infty}^{pi/2}{e^x *sin^2(x) dx}= e^x [/mm] *sin(2x)dx
[mm] =e^x*sin(2x)|^{pi/2}_{-\infty} [/mm] - [mm] 1/2\integral_{-\infty}^{pi/2}{e^x*cos(2x)dx} [/mm]

Mir ist klar, dass man die partielle Integr. verwenden muss. Nur wenn ich sie verwendet hätte, hätt ich folgendes aufgeschrieben:
[mm] \integral_{-\infty}^{pi/2}{e^x *sin^2(x) dx}=e^x [/mm] *sin(2x) - [mm] 2\integral_{-\infty}^{pi/2}{e^x *cos(2x) dx} [/mm]

Da:
    
h(x)= sin(2x)     [mm] g(x)=e^x [/mm]
h'(x)= 2cos(2x)    [mm] g'(x)=e^x [/mm]

Wieso ist das aber nicht so?

LG zitrone

        
Bezug
Integrale: Antwort
Status: (Antwort) fertig Status 
Datum: 20:34 Do 31.01.2013
Autor: Fulla

Hallo Zitrone!

> Guten Abend!
>  
> Ich werde aus zwei Rechnungen einfach nicht schlau..Ich
> kann einfach nicht nachvollziehen, wieso man diesen Schritt
> getätigt hat...Könnte sich bitte jmd erbarmen und mir
> bitte kurz sagen weshalb das so richtig ist?
>  
> 1)
>  
> [mm]\integral_{0}^{2\pi}{sin^2(x) dx}=\integral_{0}^{2\pi}{dx} -\integral_{0}^{2\pi}{sin^2(x) dx}[/mm]
>  
> [mm]\integral_{0}^{2\pi}{sin^2(x) dx}[/mm] = [mm]2\pi[/mm] -
> [mm]\integral_{0}^{2\pi}{sin^2(x)dx}[/mm]
>  
> => Wieso 2pi? Müsste da eigentlich nichts stehen? Denn hab
> ich bei dem dx ja kein x davor stehen, für das ich 2pi
> einsetzen könnte...

Es ist doch [mm]\int_0^{2\pi}dx=\int_0^{2\pi}1\ dx=\big[x\big]_0^{2\pi}=2\pi[/mm].
Ich würde mich eher fragen warum das zweite Integral richtig ist. Ich vermute mal, zuerst wurde [mm]\sin^2(x)=1-\cos^2(x)[/mm] verwendet, das Integral aufgeteilt und dann ausgenutzt, dass [mm]\integral_{0}^{2\pi}{sin^2(x)dx}=\integral_{0}^{2\pi}{cos^2(x)dx}[/mm].

> 2)
>  
> [mm]\integral_{-\infty}^{pi/2}{e^x *sin^2(x) dx}= e^x[/mm]
> *sin(2x)dx

Das stimmt doch nicht!

>  [mm]=e^x*sin(2x)|^{pi/2}_{-\infty}[/mm] -
> [mm]1/2\integral_{-\infty}^{pi/2}{e^x*cos(2x)dx}[/mm]

Geht es um [mm]\integral_{-\infty}^{pi/2}{e^x *sin^2(x) dx}[/mm] oder [mm]\integral_{-\infty}^{pi/2}{e^x *sin(2x) dx}[/mm]? Aufgrund deiner Rechnung unten vermute mal Letzteres, oder?


> Mir ist klar, dass man die partielle Integr. verwenden
> muss. Nur wenn ich sie verwendet hätte, hätt ich
> folgendes aufgeschrieben:
>  [mm]\integral_{-\infty}^{pi/2}{e^x *sin^2(x) dx}=e^x[/mm] *sin(2x)
> - [mm]2\integral_{-\infty}^{pi/2}{e^x *cos(2x) dx}[/mm]
>  
> Da:
>      
> h(x)= sin(2x)     [mm]g(x)=e^x[/mm]
>  h'(x)= 2cos(2x)    [mm]g'(x)=e^x[/mm]
>  
> Wieso ist das aber nicht so?

So kannst du das auch machen. Um auf die Form in der Musterlösung zu kommen versuch's mal mit [mm]g'(x)=\sin(2x)[/mm] und [mm]h(x)=e^x[/mm].


Lieben Gruß,
Fulla


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de