Integrale berechnen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Berechne: [mm] \integral_{0}^{\infty}{x*sin(x)/(x^2+a^2) dx}[/mm] mit [mm] a>0 [/mm] |
Also, es gilt ja [mm] \integral_{0}^{\infty}{x*sin(x)/(x^2+a^2) dx} = 1/2 \integral_{-\infty}^{\infty}{x*sin(x)/(x^2+a^2) dx} [/mm] und jetzt kommt der entscheidende Schritt den ich nicht richtig verstehe. Laut meinem Übungsleiter gilt: [mm] 1/2 \integral_{-\infty}^{\infty}{x*sin(x)/(x^2+a^2) dx} = Im 1/2 \integral_{-\infty}^{\infty}{x*e^(ix) /(x^2+a^2) dx} [/mm] weil [mm] x*sin(x) [/mm] ungerade ist. Kann mir das jemand erklären?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:39 Mi 19.07.2017 | Autor: | chrisno |
> Berechne: [mm]\integral_{0}^{\infty}{x*sin(x)/(x^2+a^2) dx}[/mm] mit
> [mm]a>0[/mm]
> Also, es gilt ja [mm]\integral_{0}^{\infty}{x*sin(x)/(x^2+a^2) dx} = 1/2 \integral_{-\infty}^{\infty}{x*sin(x)/(x^2+a^2) dx}[/mm]
> und jetzt kommt der entscheidende Schritt den ich nicht
> richtig verstehe.
Halt. Warum gilt diese Gleichheit. Dafür muss gelten:
[mm]\integral_{0}^{\infty}{x*sin(x)/(x^2+a^2) dx} = \integral_{-\infty}^{0}{x*sin(x)/(x^2+a^2) dx}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Ohne nachrechnen kannst Du dass nur sagen, wenn eine Symmetrie genutzt wird. Wenn der Integrand für jedes -x den gleichen Wert annimmt, wie bei x, dann gilt es. ${-x*sin(-x)/((-x)^2+a^2) = {x*sin(x)/(x^2+a^2)$ weil $sin(-x) = -sin(x)$. sin(x) ist also ungerade.
> Laut meinem Übungsleiter gilt: [mm]1/2 \integral_{-\infty}^{\infty}{x*sin(x)/(x^2+a^2) dx} = Im 1/2 \integral_{-\infty}^{\infty}{x*e^(ix) /(x^2+a^2) dx}[/mm]
> weil [mm]x*sin(x)[/mm] ungerade ist. Kann mir das jemand erklären?
Nein. Das Symmetrieargument wird eine Zeile früher benutzt. Außerdem ist [mm]x*sin(x)[/mm] gerade. Diese Umformung benutzt den Zusammenahang zwischen exp und sin.
|
|
|
|
|
> > Berechne: [mm]\integral_{0}^{\infty}{x*sin(x)/(x^2+a^2) dx}[/mm] mit
> > [mm]a>0[/mm]
> > Also, es gilt ja
> [mm]\integral_{0}^{\infty}{x*sin(x)/(x^2+a^2) dx} = 1/2 \integral_{-\infty}^{\infty}{x*sin(x)/(x^2+a^2) dx}[/mm]
> > und jetzt kommt der entscheidende Schritt den ich nicht
> > richtig verstehe.
> Halt. Warum gilt diese Gleichheit. Dafür muss gelten:
> [mm]\integral_{0}^{\infty}{x*sin(x)/(x^2+a^2) dx} = \integral_{-\infty}^{0}{x*sin(x)/(x^2+a^2) dx}[/mm]
>
> Ohne nachrechnen kannst Du dass nur sagen, wenn eine
> Symmetrie genutzt wird. Wenn der Integrand für jedes -x
> den gleichen Wert annimmt, wie bei x, dann gilt es.
> [mm]{-x*sin(-x)/((-x)^2+a^2) = {x*sin(x)/(x^2+a^2)[/mm] weil [mm]sin(-x) = -sin(x)[/mm].
> sin(x) ist also ungerade.
>
Ja damit hast du natürlich recht
>
> > Laut meinem Übungsleiter gilt: [mm]1/2 \integral_{-\infty}^{\infty}{x*sin(x)/(x^2+a^2) dx} = Im 1/2 \integral_{-\infty}^{\infty}{x*e^(ix) /(x^2+a^2) dx}[/mm]
> > weil [mm]x*sin(x)[/mm] ungerade ist. Kann mir das jemand erklären?
> Nein. Das Symmetrieargument wird eine Zeile früher
> benutzt. Außerdem ist [mm]x*sin(x)[/mm] gerade. Diese Umformung
> benutzt den Zusammenahang zwischen exp und sin
Enstchuldigung, ich habe mich auch leider verschrieben. Die Begründung war, das [mm] x*cos(x) [/mm] ungerade ist. Obwohl mir das auch erst mal nicht viel weiterhilft.
Der Zusammenhang ist mir neu. Ich kenne nur das [mm] sin(z)= 1/(2*i) *(e^(i*z)-e^(-i*z)) [/mm], aber das hat ja vermutlich nichts mit der Umformung zu tun oder?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:27 Mi 19.07.2017 | Autor: | chrisno |
> > > Berechne: [mm]\integral_{0}^{\infty}{x*sin(x)/(x^2+a^2) dx}[/mm] mit
>
> Enstchuldigung, ich habe mich auch leider verschrieben. Die
> Begründung war, das [mm]x*cos(x)[/mm] ungerade ist. Obwohl mir das
> auch erst mal nicht viel weiterhilft.
> Der Zusammenhang ist mir neu. Ich kenne nur das [mm]sin(z)= 1/(2*i) *(e^(i*z)-e^(-i*z)) [/mm],
> aber das hat ja vermutlich nichts mit der Umformung zu tun
> oder?
>
Du benötigst $e ^{i x} = [mm] \cos [/mm] x + i [mm] \cdot \sin [/mm] x$
Wenn Du nun [mm] $\integral_{-\infty}^{\infty}{x\cdot{}e^{ix} /(x^2+a^2) dx} [/mm] $ berechnen willst, dann ersetze $e ^{i x}$ durch $ [mm] \cos [/mm] x + i [mm] \cdot \sin [/mm] x$ Der vom cos gelieferte Anteil fällt weg, da er ungerade ist.
|
|
|
|
|
> > > > Berechne: [mm]\integral_{0}^{\infty}{x*sin(x)/(x^2+a^2) dx}[/mm] mit
> Du benötigst [mm]e ^{i x} = \cos x + i \cdot \sin x[/mm]
> Wenn Du
> nun [mm]\integral_{-\infty}^{\infty}{x\cdot{}e^{ix} /(x^2+a^2) dx}[/mm]
> berechnen willst, dann ersetze [mm]e ^{i x}[/mm] durch [mm]\cos x + i \cdot \sin x[/mm]
> Der vom cos gelieferte Anteil fällt weg, da er ungerade
> ist.
Erstmal vielen Dank, hätte ich fast vergessen. Also nutzen wir, dass [mm] Im(e^{ix}) = sin(x) [/mm] das leuchtet mir soweit ein. Aber laut meinen Übungsleiter gilt ja [mm]\integral_{-\infty}^{\infty}{x\cdot{}sin(x)/(x^2+a^2) dx}=Im( \integral_{-\infty}^{\infty}{x\cdot{}e^{ix} /(x^2+a^2) dx})[/mm] und das verstehe ich noch nicht wirklich.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:29 Mi 19.07.2017 | Autor: | chrisno |
[mm]\integral_{-\infty}^{\infty}{x\cdot{}e^{ix} /(x^2+a^2) dx} = \integral_{-\infty}^{\infty}{x\cdot{} (\cos(x) + i \sin(x)) /(x^2+a^2) dx}= \integral_{-\infty}^{\infty}{x\cdot{} \cos(x) /(x^2+a^2) dx}+\integral_{-\infty}^{\infty}{x\cdot{} i \sin(x) /(x^2+a^2) dx} = 0+ \integral_{-\infty}^{\infty}{x\cdot{} i \sin(x) /(x^2+a^2) dx}[/mm]
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:05 Mi 19.07.2017 | Autor: | Keinstein |
So jetzt hab ich es verstanden. Vielen Dank für die sehr gute Erklärung.
|
|
|
|