www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrieren und Differenzieren" - Integrale transformieren
Integrale transformieren < Integr.+Differenz. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrale transformieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:10 Mi 25.01.2006
Autor: miho

Aufgabe 1
Bei der numerischen Integration von  [mm] \integral_{0}^{1} {\sqr{t}\sin(t) dt} [/mm] tritt die Schwierigkeit auf, dass der Integrand für t = 0 ubeschränkte Ableitungen besitzt. Dies fürt zu Ordnungsverlust bei den anzuwendenden Quadraturformeln. Transformieren Sie das Integral so, dass diese Schwierigkeiten vermieden werden.

Aufgabe 2
Bei der numerischen Berechnung von  [mm] \integral_{1}^{\infty} {\frac{1}{t^2}\sin(\frac{1}{t})dt} [/mm]  tritt die Schwierigkeit auf, dass das Integrationsintervall nicht beschränkt ist. Auch hier transformiere man das Integral so, dass diese Schwierigkeiten vermieden werden.

Hallo!

Ich habe prinzipelle Probleme mit obigen Aufgaben. Ich weiß nicht, wie ich vorgehen soll. Beim ersten Integral habe ich versucht zu substituieren, aber das hat nicht funktioniert. Wenn mir jemand die prinzipielle Vorgehensweise erklären könnte, wäre ich sehr dankbar, denn leider gab es in der Vorlesung keinerlei Hinweise dazu :(

Vielen Dank!

miho

        
Bezug
Integrale transformieren: Antwort
Status: (Antwort) fertig Status 
Datum: 11:24 Do 26.01.2006
Autor: MatthiasKr

Hallo miho,

erstmal zu aufgabe2, denn die ist einfacher: es bietet sich an, $z=1/t$ zu substituieren, oder? dann bist du das problem automatisch los.

aufgabe1: ehrlich gesagt, kann ich den aufgabentext nicht so ganz nachvollziehen, denn der integrand hat mitnichten eine unbeschraenkte ableitung bei $0$. hast du den text 100% richtig abgetippt?

VG
Matthias

Bezug
                
Bezug
Integrale transformieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:27 Do 26.01.2006
Autor: miho

Erstmal vielen Dank für deine Antwort! Ich habe deinen Vorschlag zu 2. umgesetzt und es hat geklappt! Ich habe mich bei Aufg. 1 wirklich vertippt. Es sollte nicht t*sin(t) sonder [mm] \sqrt{t} \sin(t) [/mm] heißen.

Bezug
                        
Bezug
Integrale transformieren: Antwort
Status: (Antwort) fertig Status 
Datum: 07:22 Fr 27.01.2006
Autor: schurikxxx

Hallo miho,

du mußt immer versuchen mit der Substitution das Problem zu beseitigen.
Um  $ [mm] \sqrt{t} \sin(t) [/mm] $ in der 0 ableiten zu können, mußt du  [mm] \sqrt{t} [/mm] "differenzierbar" machen und das geht z.B  mit [mm] s=t^2. [/mm]

Gruß
Schurikxx

Bezug
                                
Bezug
Integrale transformieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:49 Fr 27.01.2006
Autor: miho

Danke für deine Antwort!

Gruß,
miho

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de