www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integrale und Flächen
Integrale und Flächen < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrale und Flächen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:30 Fr 18.02.2022
Autor: steve.joke

Aufgabe
Gegeben ist eine Funktion  [mm] f(x)=-(x-4)^2+2 [/mm]

Es gilt:  [mm] \integral_{3}^{5}{f(x) dx} [/mm] = [mm] \bruch{10}{3} [/mm] FE

Berechnen Sie, um wieviel Einheiten der Scheitelpunkt der Parabel nach oben verschoben werden muss, sodass [mm] \integral_{3}^{5}{f(x) dx} [/mm] = 12,5 FE gilt.

Hallo,

mir ist klar, dass ich erstmal die Differenz der Flächen berechnen muss, das ist nämlich

12,5 - [mm] \bruch{10}{3} [/mm] = [mm] \bruch{55}{6} [/mm]

was mir nicht ganz einleuchtend ist, warum ich diese Zahl jetzt durch 2 dividieren muss und deswegen die Parabel um [mm] \bruch{55}{12} [/mm] nach oben verschoben werden muss.

Die 2 ist die Differenz von 5-3, das ist mir klar. Nur verstehe ich nicht, warum man damit auf die Verschiebung kommt.

Habt Ihr vielleicht eine Erklärung?

        
Bezug
Integrale und Flächen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:59 Fr 18.02.2022
Autor: fred97


> Gegeben ist eine Funktion  [mm]f(x)=-(x-4)^2+2[/mm]
>  
> Es gilt:  [mm]\integral_{3}^{5}{f(x) dx}[/mm] = [mm]\bruch{10}{3}[/mm] FE
>  
> Berechnen Sie, um wieviel Einheiten der Scheitelpunkt der
> Parabel nach oben verschoben werden muss, sodass
> [mm]\integral_{3}^{5}{f(x) dx}[/mm] = 12,5 FE gilt.
>  Hallo,
>  
> mir ist klar, dass ich erstmal die Differenz der Flächen
> berechnen muss, das ist nämlich
>  
> 12,5 - [mm]\bruch{10}{3}[/mm] = [mm]\bruch{55}{6}[/mm]
>  
> was mir nicht ganz einleuchtend ist, warum ich diese Zahl
> jetzt durch 2 dividieren muss und deswegen die Parabel um
> [mm]\bruch{55}{12}[/mm] nach oben verschoben werden muss.
>  
> Die 2 ist die Differenz von 5-3, das ist mir klar. Nur
> verstehe ich nicht, warum man damit auf die Verschiebung
> kommt.
>  
> Habt Ihr vielleicht eine Erklärung?

Nennen wir mal die gewünschte Verschiebung nach oben $c$ und wir betrachten die Funktion

    [mm] $f_c(x)= [/mm] f(x)+c.$

Dann:

[mm] $12,5=\int_3^5 f_c(x) [/mm] dx = [mm] \int_3^5 [/mm] f(x) dx [mm] +\int_3^5 [/mm] c dx= [mm] \frac{10}{3}+2c,$ [/mm]

also

$2c=12,5- [mm] \frac{10}{3}$ [/mm] und somit $c= [mm] \frac{1}{2}(12,5- \frac{10}{3}).$ [/mm]

Wie kommt die $2$ zustande ? So: die Länge des Integrationsintervalls $=2.$


Bezug
                
Bezug
Integrale und Flächen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:06 Fr 18.02.2022
Autor: steve.joke

Danke dir.

Sehr verständlich.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de