www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Physik" - Integrale zur Wegstreckenb.
Integrale zur Wegstreckenb. < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrale zur Wegstreckenb.: Begründung
Status: (Frage) beantwortet Status 
Datum: 22:15 Di 20.04.2010
Autor: theromanian

Aufgabe
[mm] $S_A_B= \integral_{A}^{B}{ds}$ [/mm]

Wir haben heute gelernt, dass eine Teilstrecke auf einer Wurfbahn mit dem Integral,wie in der Aufgabenstellung beschrieben, ausgerechnet werden kann. Ich verstehe aber nicht warum, da doch das Integral die Fläche unter der Kurve bezeichnet und diese beiden doch nicht mal in der selben Dimension sind. Wäre super, wenn es mir jemand erklären könnte.

Danke.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integrale zur Wegstreckenb.: Antwort
Status: (Antwort) fertig Status 
Datum: 23:19 Di 20.04.2010
Autor: Kroni

Hi,

wenn du ne Funktion $f(x)$ hast, und die ueber $x$ integrierst, ists die Flaeche unterhalb des Graphen. Du integrierst jetzt aber ueber das Wegelement [mm] $\mathrm{d}s$. [/mm] Das kann man sich dann vorstellen, als ein infinitesimales kleines Stueck Weglaenger auf deinem Weg, den du gehst. Also, wenns zB $2D$ ist [mm] $\mathrm{d}s [/mm] = [mm] \sqrt{\mathrm{d}x^2+\mathrm{d}y^2}$. [/mm] Wenn man das jetzt integriert (was ja eigentlich auch nichts anderes ist, als ne Summation, nur dass die Schrittweite gegen Null geht), dann summiert man alle kleinen Wegelemente [mm] $\mathrm{d}s$ [/mm] auf, und erhaelt dann so die Laenge des Pfades.
Das macht man dann meist ueber eine Weg-Parametrisierung, wie es zB []hier oder []hier unter 'Laenge des Weges' bzw Funktionsgraphen steht.

Wenn du dir dann die Def. von [mm] $\mathrm{d}s$ [/mm] anguckst, siehst du, dass es Dimension Laenge hat.

Es ist halt dann nicht mehr so 'einfach', dass man ueber ein [mm] $\mathrm{d}x$ [/mm] integriert, sondern jetzt ueber ein komplizierteres Gebilde, dass eben die Differentiale unter der Wurzel stehen hat. Ich denke, dass man dann mit der 'infinitesimales Wegelement' (das kann man sich dann auch durch die Laenge des infinitesimalen Vektors der Verbindungslinie der Koordinaten $(x,y)$ und [mm] (x+\mathrm{d}x, y+\mathrm{d}y)$ [/mm] 'herleiten') und dem Integral als Summation erklaeren kann.

LG

Kroni


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de