www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integralfunktion
Integralfunktion < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralfunktion: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:26 So 08.07.2007
Autor: Chrissi21

Aufgabe
Gegeben sei die Integralfunktion [mm] F_a [/mm] (X)= [mm] \integral_{a}^{x} (2t^2+4t)dt. [/mm]
1.) Geben Sie [mm] F_a [/mm] (x) an.
2.) Zeigen Sie, daß die Ableitung von [mm] F_a [/mm] (X) gleich dem Term der Integralfunktion ist.
3.) Nun sei a=0. Für welchen Wert x gilt [mm] F_0 [/mm] (X)= [mm] \bruch{4}{3} [/mm] ?

Hi, ich hab ein kleines Problem mit der dritten Aufgabe, ich bekomme immer ein falsches Ergebniss raus, hoffe, mir kann jemand dabei helfen. Ich hab diese Frage in keinem anderen Forum gestellt.

Zu 1.) [mm] F_a [/mm] (x)=  [mm] \integral_{a}^{x} (2t^2+4t)dt [/mm]
=  [mm] \integral_{a}^{x} 2t^2 [/mm] dt+  [mm] \integral_{a}^{x} [/mm] 4t dt
=2 [mm] \integral_{a}^{x}t^2 [/mm] dt + 4 [mm] \integral_{a}^{x} [/mm] t dt
[mm] =2*\bruch{1}{3}X^3 [/mm] + [mm] 4*\bruch{1}{2}X^2 [/mm]
[mm] =\bruch{2}{3}X^3 [/mm] + [mm] \bruch{4}{2}X^2 [/mm]
Also [mm] F_a [/mm] (X)= [mm] \bruch{2}{3}X^3 [/mm] + [mm] \bruch{4}{2}X^2 [/mm]

Zu2.)
Die Ableitung von [mm] F_a [/mm] (X)= [mm] \bruch{2}{3}X^3 [/mm] + [mm] \bruch{4}{2}X^2 [/mm]
= [mm] 2X^2+ [/mm] 4X

Zu 3.)
Es gilt [mm] \integral_{0}^{x} (2t^2+4t)dt [/mm] = [mm] \bruch{4}{3}oder 2X^2 [/mm] + 4X = [mm] \bruch{4}{3}. [/mm]
Lösen der Quadratischen Gleichung:
[mm] 2X^2 [/mm] + [mm] 4X=\bruch{4}{3} [/mm]         /:2
= [mm] X^2 [/mm] + 2X - [mm] \bruch{2}{3}=0 [/mm]

Dann pq-Formel:
Als Ergebnisse bekomme ich dann für [mm] X_1=-2,291 [/mm] oder [mm] X_2=0,291 [/mm] raus. Das is aber Falsch. Jetzt weiß ich nicht, wo mein Fehler liegt.
Bitte hilft mir!

        
Bezug
Integralfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:50 So 08.07.2007
Autor: Bastiane

Hallo Chrissi21!

> Gegeben sei die Integralfunktion [mm]F_a[/mm] (X)= [mm]\integral_{a}^{x} (2t^2+4t)dt.[/mm]
>  
> 1.) Geben Sie [mm]F_a[/mm] (x) an.
>  2.) Zeigen Sie, daß die Ableitung von [mm]F_a[/mm] (X) gleich dem
> Term der Integralfunktion ist.
> 3.) Nun sei a=0. Für welchen Wert x gilt [mm]F_0[/mm] (X)=
> [mm]\bruch{4}{3}[/mm] ?
>  Hi, ich hab ein kleines Problem mit der dritten Aufgabe,
> ich bekomme immer ein falsches Ergebniss raus, hoffe, mir
> kann jemand dabei helfen. Ich hab diese Frage in keinem
> anderen Forum gestellt.
>  
> Zu 1.) [mm]F_a[/mm] (x)=  [mm]\integral_{a}^{x} (2t^2+4t)dt[/mm]
>  =  
> [mm]\integral_{a}^{x} 2t^2[/mm] dt+  [mm]\integral_{a}^{x}[/mm] 4t dt
>  =2 [mm]\integral_{a}^{x}t^2[/mm] dt + 4 [mm]\integral_{a}^{x}[/mm] t dt
>  [mm]=2*\bruch{1}{3}X^3[/mm] + [mm]4*\bruch{1}{2}X^2[/mm]

Wo ist denn hier das a geblieben??? Du musst doch sowohl obere als auch untere Grenze einsetzen!

>  [mm]=\bruch{2}{3}X^3[/mm] + [mm]\bruch{4}{2}X^2[/mm]
>  Also [mm]F_a[/mm] (X)= [mm]\bruch{2}{3}X^3[/mm] + [mm]\bruch{4}{2}X^2[/mm]
>  
> Zu2.)
> Die Ableitung von [mm]F_a[/mm] (X)= [mm]\bruch{2}{3}X^3[/mm] +
> [mm]\bruch{4}{2}X^2[/mm]
>   = [mm]2X^2+[/mm] 4X
>  
> Zu 3.)
>   Es gilt [mm]\integral_{0}^{x} (2t^2+4t)dt[/mm] = [mm]\bruch{4}{3}oder 2X^2[/mm]
> + 4X = [mm]\bruch{4}{3}.[/mm]

Äh - was soll das denn bedeuten? Wie kommst du darauf? Ich würde sagen, hier hast du [mm] F_0(x)=\frac{2}{3}x^3+2x^2 [/mm] und das musst du jetzt [mm] =\frac{4}{3} [/mm] setzen. Multipliziere dann die ganze Gleichung mal mit 3, rate eine Nullstelle (z. B. x=-1) und mache Polynomdivision. Kommst du dann auf das richtige Ergebnis?

Viele Grüße
Bastiane
[cap]

Bezug
                
Bezug
Integralfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:45 So 08.07.2007
Autor: Chrissi21

Ich hab erstmal ne Frage zur 1. Aufgabe, wie muss ich a berechnen, genauso wie x oder wie? Dann komm ich mit der Polynomdivision nicht sehr weit:
[mm] (2x^3+6X^2-4):(X-1)= 2X^2+8X+8 [/mm] und mir bleibt ein Rest von 4. Was mach ich jetzt? Ich sollte ja die komplette Gleichung mit 3 multiplizieren. Dann sieht das so aus wie oben. Es geht bei mir nur nicht auf.

Bezug
                        
Bezug
Integralfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:05 So 08.07.2007
Autor: Bastiane

Hallo Chrissi21!

> Ich hab erstmal ne Frage zur 1. Aufgabe, wie muss ich a
> berechnen, genauso wie x oder wie? Dann komm ich mit der
> Polynomdivision nicht sehr weit:
>  [mm](2x^3+6X^2-4):(X-1)= 2X^2+8X+8[/mm] und mir bleibt ein Rest von
> 4. Was mach ich jetzt? Ich sollte ja die komplette
> Gleichung mit 3 multiplizieren. Dann sieht das so aus wie
> oben. Es geht bei mir nur nicht auf.  

Bei der Polnyomdivision musst du natürlich durch (x+1) teilen, wenn x=-1 eine Nullstelle ist!

Allgemein berechnet man Integrale wie folgt:

[mm] \integral_a^b{f(x)\:dx}=F(b)-F(a) [/mm]

wobei F die Stammfunktion von f ist.

Viele Grüße
Bastiane
[cap]

Bezug
                                
Bezug
Integralfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:29 So 08.07.2007
Autor: Chrissi21

Vielen Dank, du hast mir echt super geholfen, ich wünsche dir noch einen schönen Sonntag!
Gruß
Chrissi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de