www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integralfunktion
Integralfunktion < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:09 Sa 05.04.2008
Autor: puldi

Eine Integralfunktion existiert, wenn die Integrandenfunktion stetig ist, kann man das so sagen?

Danke!

        
Bezug
Integralfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 13:35 Sa 05.04.2008
Autor: XPatrickX

Hi, würde ich nicht sagen, dass es so stimmt, denn für [mm] \integral_{}^{}{e^{-x^2} dx} [/mm] gibt es keinen geschlossenen Ausdruck, aber [mm] e^{-x^2} [/mm] ist natürlich auf ganz [mm] \IR [/mm] stetig.
Aber vielleicht kann das noch jemand besser erklären.
Gruß Patrick

Bezug
                
Bezug
Integralfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:15 Sa 05.04.2008
Autor: angela.h.b.


> Hi, würde ich nicht sagen, dass es so stimmt, denn für
> [mm]\integral_{}^{}{e^{-x^2} dx}[/mm] gibt es keinen geschlossenen
> Ausdruck, aber [mm]e^{-x^2}[/mm] ist natürlich auf ganz [mm]\IR[/mm] stetig.

Hallo,

Du mußt hier zweierlei unterscheiden:

1. Gibt es eine Stammfunktion? Das ist für [mm] e^{-x^2} [/mm]  der Fall. Denn die Funktion ist ja stetig.

2. Kann man sie explizit angeben? Bei [mm] e^{-x^2} [/mm] nicht. Das hat aber mit ihrer Existenz nichts zu tun.

Gruß v. Angela

Bezug
        
Bezug
Integralfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:11 Sa 05.04.2008
Autor: angela.h.b.


> Eine Integralfunktion existiert, wenn die
> Integrandenfunktion stetig ist, kann man das so sagen?
>  
> Danke!

Hallo,

ich glaube, daß Du Integralfunktion und Stammfunktion verwechselst.

wenn [mm] f:[a,b]\to \IR [/mm]  integrierbar ist, kann ich eine Funktion [mm] I:[a,b]\to \IR [/mm] definieren mit

[mm] I(x):=\integral_{a}^{x}{f(x) dx}. [/mm]

Die Stetigkeit von f ist hierfür nicht notwendig, Du kannst ja z.B. Treppenfunktionen integrieren.
Für diese ist I nicht stetig.


Nun betrachten wir die Integralfunktion einer stetigen Funktion [mm] f:[a,b]\to \IR. [/mm]

In diesem Fall gilt: die Integralfunktion ist differenzierbar und es ist I' =f.
Funktionen mit dieser Eigenschaft nennt man dann "Stammfunktion von f".


Es gilt also: f ist stetig ==> F hat eine Stammfunktion.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de