www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Integralfunktion
Integralfunktion < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:11 So 30.01.2005
Autor: Alfili

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo,

und DANKESCHÖN an leduart für die schnelle Antwort!!!!!!!! Ist echt nett!!!

Hab hier noch etwas, womit ich leider gar nichts anfangen kann. ;-((
geg:  [mm]f_{t}(x)=(x^2-t^2)*e^{-x^2}[/mm] (t>0)

Aufgabenstellung: Bestimmen Sie a,b, und c, so dass sich [mm] f_{t} [/mm] darstellen lässt durch [mm] f_{t}(x)=\integral_{t}^{x} {(au^3+bu)*e^{-u^2} du +c} [/mm]

Außerdem ist folgender Hinweis gegeben:
- Verwenden Sie u.a. den Satz: Die Ableitung einer Integralfunktion ergibt die Integrandenfunktion

Wäre schon über Ansätze bzw. Ideen glücklich.
Danke schon mal!!!

        
Bezug
Integralfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:52 Mo 31.01.2005
Autor: Zwerglein

Hallo, Alfili,
hier handelt sich's ja offensichtlich um eine Anwendung des HdJ, der - flappsig formuliert - besagt, dass die Ableitung des Integrals die Integrandenfunktion ist.
Bei Deinem Beispiel: [mm] f'_{t}(x)=(ax^{3}+bx)*e^{-x^{2}}. [/mm]
(Das eher ungewöhnliche c am Ende Deiner Funktion fällt beim Ableiten sowieso weg!).
Also bilden wir die Ableitung der gegebenen Funktion [mm] f_{t} [/mm] und setzen diese mit der Integrandenfunktion gleich, wobei auch bei dieser als Variable "x" verwendet werden muss (nach Integrieren müsste ja statt u die Obergrenze x eingesetzt werden!).
Ich erhalte für die Ableitung (ohne Gewähr auf Rechenfehler!):
f'_{t}(x)= [mm] (-2x^{3}+(2t^{2}+2)x)*e^{-x^{2}}. [/mm]
Gleichsetzen mit [mm] (ax^{3}+bx)*e^{-x^{2}} [/mm] und Koeffizientenvergleich
(bei [mm] x^{3} [/mm] und bei x) ergibt: a=-2 und [mm] b=2t^{2}+2; [/mm] außerdem ist c=0.
Schau mal, ob Du's nachvollziehen kannst!
mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de