www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Integralrech. mehr Varia.
Integralrech. mehr Varia. < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrech. mehr Varia.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:16 Di 03.12.2013
Autor: bquadrat

Aufgabe
Zu bestimmen ist der Wert folgender Integrale
a) [mm] \integral_{1}^{2}{\integral_{0}^{y}{x\wurzel{y^{2}-x^{2}}dx}dy} [/mm]
b) [mm] \integral_{0}^{1}{\integral_{y^{4}}^{y^{2}}{\wurzel{\bruch{y}{x}}dx}dy} [/mm]

Kann mir bitte mal jemand helfen oder zumindest verraten, welche Ansätze und mit welchem #Typ von Integration ich arbeiten muss?

Danke im Voraus

[mm] b^{2} [/mm]

        
Bezug
Integralrech. mehr Varia.: Antwort
Status: (Antwort) fertig Status 
Datum: 11:27 Di 03.12.2013
Autor: Gonozal_IX

Hiho,

beim ersten Substituiere [mm] $y^2 [/mm] - [mm] x^2$, [/mm] beim zweiten kannst du doch einfach integrieren, wo ist dein Problem?

Fang doch mal an.

Gruß,
Gono.

Bezug
                
Bezug
Integralrech. mehr Varia.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:32 Di 03.12.2013
Autor: bquadrat

Ja beim zweiten habe ich komplizierter gedacht, als nötig war :) ist mir eben auch aufgefallen, da habe ich [mm] \bruch{8}{15} [/mm] herausbekommen. Mit dem ersten fange ich jetzt mal mit dem Ansatz an. Danke schonmal :)

Bezug
                        
Bezug
Integralrech. mehr Varia.: Antwort
Status: (Antwort) fertig Status 
Datum: 11:39 Di 03.12.2013
Autor: Richie1401

Hallo,

> Ja beim zweiten habe ich komplizierter gedacht, als nötig
> war :) ist mir eben auch aufgefallen, da habe ich
> [mm]\bruch{8}{15}[/mm]

Das stimmt aber nicht so recht.

Richtig ist [mm] \bruch{8}{35}. [/mm]
Wer weiß, wo da der Fehler liegt...

> herausbekommen. Mit dem ersten fange ich
> jetzt mal mit dem Ansatz an. Danke schonmal :)


Bezug
                                
Bezug
Integralrech. mehr Varia.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:09 Di 03.12.2013
Autor: bquadrat

Hmm okay also ich fasse mal zusammen was ich gemacht habe:
[mm] \integral_{0}^{1}{\integral_{y^{4}}^{y^{2}}{\wurzel{\bruch{y}{x}}dx}dy}=\integral_{0}^{1}{\wurzel{y}\integral_{y^{4}}^{y^{2}}{x^{-\bruch{1}{2}}}dx}dy=\integral_{0}^{1}{\wurzel{y}[2\wurzel{x}]^{y^{2}}_{y^{4}}}dy=\integral_{0}^{1}{(2y^{\bruch{3}{2}}-2y^{\bruch{5}{2}}})dy=[\bruch{4}{3}y^{\bruch{5}{2}}-\bruch{4}{5}y^{\bruch{7}{2}}]^{1}_{0}=\bruch{8}{15} [/mm]

[mm] \integral_{1}^{2}{\integral_{0}^{y}{x\wurzel{y^{2}-x^{2}}dx}dy} [/mm]
Substitution [mm] \gamma=y^{2}-x^{2} \Rightarrow \bruch{d\gamma}{dx}=-2x \Rightarrow dx=-\bruch{d\gamma}{2x} [/mm]

[mm] \Rightarrow [/mm]
[mm] \integral_{1}^{2}{\integral_{0}^{y}{x\wurzel{y^{2}-x^{2}}dx}dy}=-\bruch{1}{2}\integral_{1}^{2}{\integral_{y^{2}}^{0}{x\wurzel{\gamma}\bruch{d\gamma}{x}}}dy=-\bruch{1}{2}\integral_{1}^{2}{[\gamma^{\bruch{3}{2}}]^{0}_{y^{2}}dy}=...=\bruch{11}{8} [/mm]

Bezug
                                        
Bezug
Integralrech. mehr Varia.: Antwort
Status: (Antwort) fertig Status 
Datum: 12:59 Di 03.12.2013
Autor: Gonozal_IX

Hiho,

> Hmm okay also ich fasse mal zusammen was ich gemacht habe:
>  
> [mm]\integral_{0}^{1}{\integral_{y^{4}}^{y^{2}}{\wurzel{\bruch{y}{x}}dx}dy}=\integral_{0}^{1}{\wurzel{y}\integral_{y^{4}}^{y^{2}}{x^{-\bruch{1}{2}}}dx}dy=\integral_{0}^{1}{\wurzel{y}[2\wurzel{x}]^{y^{2}}_{y^{4}}}dy=\integral_{0}^{1}{(2y^{\bruch{3}{2}}-2y^{\bruch{5}{2}}})dy=[\bruch{4}{3}y^{\bruch{5}{2}}-\bruch{4}{5}y^{\bruch{7}{2}}]^{1}_{0}=\bruch{8}{15}[/mm]

Hier scheitert es daran, dass du [mm] $y^\bruch{3}{2}$ [/mm] und [mm] $y^{\bruch{5}{2}}$ [/mm] nicht korrekt integrieren kannst.

> [mm]\integral_{1}^{2}{\integral_{0}^{y}{x\wurzel{y^{2}-x^{2}}dx}dy}[/mm]
>  Substitution [mm]\gamma=y^{2}-x^{2} \Rightarrow \bruch{d\gamma}{dx}=-2x \Rightarrow dx=-\bruch{d\gamma}{2x}[/mm]
>  
> [mm]\Rightarrow[/mm]
> [mm]\integral_{1}^{2}{\integral_{0}^{y}{x\wurzel{y^{2}-x^{2}}dx}dy}=-\bruch{1}{2}\integral_{1}^{2}{\integral_{y^{2}}^{0}{x\wurzel{\gamma}\bruch{d\gamma}{x}}}dy=-\bruch{1}{2}\integral_{1}^{2}{[\gamma^{\bruch{3}{2}}]^{0}_{y^{2}}dy}=...=\bruch{11}{8}[/mm]
>  

Auch hier: Was ist denn die Stammfunktion von [mm] $\wurzel{\gamma}$? [/mm]

Konzentrierter Arbeiten!!

Gruß,
Gono.

Bezug
                                                
Bezug
Integralrech. mehr Varia.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:13 Di 03.12.2013
Autor: bquadrat

Achsooo haha ja natüürlich :) Oh man :)
also kommt bei a) [mm] \bruch{5}{4} [/mm] heraus und bei b) wie du schon erwähnt hast [mm] \bruch{8}{35} [/mm]
stimmt .... Dankeschön :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de