www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integralrechnung
Integralrechnung < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung: Substitution
Status: (Frage) beantwortet Status 
Datum: 16:54 So 25.06.2006
Autor: F22

Aufgabe
Berechne [mm]\int_0^{\wurzel{\pi}} x*\sin(x^2)dx [/mm]

Hallo,

für die meisten wird sich meine Frage schwachsinnig anhören, aber ich habe in Mathe noch nie von einem Gebiet so wenig verstanden wie vom Bilden von Integralen.
Oben genannte Aufgabe hat unser Dozent sogar an der Tafel vorgerechnet, d.h. ich habe die Lösung; jedoch verstehe ich sie nicht:

[mm]g(x)=x^2 \quad und \quad g'(x)=2x [/mm] folgt:
[mm]= \Bruch{1}{2} \int_0^{\wurzel{\pi}} g'(x)*\sin(g(x)) [/mm]

und genau hier hört es mit meinem Verständnis schon auf: was wurde aus dem [mm] x [/mm] da vor dem [mm]sin(x^2) [/mm] stand?
Meiner Meinung nach sollte hieraus ein [mm]\bruch{1}{2} x^2 [/mm] werden.

Kann mir das bitte jemand erklären?

Gruß und Dank

F22

        
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:45 So 25.06.2006
Autor: shark4

Hallo F22,

im Prinzip hast du Recht, das aus [mm] x [/mm] müsste [mm] \frac{x^{2}}{2} [/mm] werden, aber nur wenn [mm] x [/mm] allein stehen würde.
Man kann aber auch so herangehen (jetzt erstmal für das unbestimmte Integral):
Wenn man als Ableitung [mm] \sin(x^2) [/mm] dabei hat muss eigentlich noch die innere Ableitung (also die Ableitung von [mm] x^2 [/mm] irgendwo auftauchen, d.h die Ableitung müsste eigentlich [mm] \sin(x^2) * 2x [/mm] lauten. So wäre zumindest schon die Frage mit dem verbliebenem [mm] x [/mm] geklärt.
Da du nun [mm] x * \sin(x^2) [/mm] integrieren musst fehlt eigentlich nur noch die 2, demnach muss das Integral [mm] \frac{1}{2} [/mm] als Faktor beinhalten. Da [mm] -\cos x [/mm] das Integral von [mm] \sin x [/mm] ist,
folgt:
[mm] \int x * \sin(x^2) d x = -\frac{1}{2} \cos(x^2) + c[/mm]
Beim bestimmten Integral lautet es eigentlich so:
[mm] \int_{0}^{\sqrt{\pi}} x * \sin(x^2) d x = \left[-\frac{1}{2} \cos(x^2)\right]_0^\sqrt{\pi}[/mm]

Alles geklärt?

Bezug
                
Bezug
Integralrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:34 So 25.06.2006
Autor: F22

So, ich habe nun verstanden, wie dieses Integral zustande kommt. Leider hilft mir dies nicht viel.
Wenn ich dies so in einer Übung vorlege, dann steht dahinter ein großes "Warum?". Gibt es denn keine Formel oder Regel, nach der man dies ableiten kann? Dieshier sieht so erraten aus.
Außerdem bringt es einem bei der Funktion[mm] -\frac{1}{2}x^2*\sin(x) [/mm] rein garnichts.

Trotzdem Danke

F22


Bezug
                        
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 01:14 Mo 26.06.2006
Autor: leduart

Hallo F22
Wir sehen auf nette Formen wie Begrüßung und so!

> So, ich habe nun verstanden, wie dieses Integral zustande
> kommt. Leider hilft mir dies nicht viel.
> Wenn ich dies so in einer Übung vorlege, dann steht
> dahinter ein großes "Warum?". Gibt es denn keine Formel
> oder Regel, nach der man dies ableiten kann? Dieshier sieht
> so erraten aus.

In diesem Fall gibt es keine formeln oder so, aber ne Menge ähnliche Fälle, und das ist nicht einfach raten, sondern eine gewisse Übersicht über die Kettenregel:
(sin(f(x))'=f'(x)*cos(f(x)) entsprechend mit cos
[mm] (e^{f(x)})'=f'(x)*e^{f(x)} [/mm]
(ln(f(x))' =f'(x)/f(x)
das sind die, die am häufigsten auftreten!
Und geschicktes "Raten" ist bei Integralen oft das schnellste. Auf die Frage "Warum" immer die Antwort, die Ableitung ergibt den Integranden!

>  Außerdem bringt es einem bei der Funktion[mm] -\frac{1}{2}x^2*\sin(x)[/mm]
> rein garnichts.

Das ist völlig richtig! Man kann nicht alle Integrale mit der sog. "Substitutionsregel integrieren, so auch dieses nicht.
Hier greift die sog. partielle Integrationsregel, die Umkehrung der Produktregel:
(u*v)'=u'v+uv'
daraus  uv= [mm] \integral{u'v dx} +\integral{uv' dx} [/mm]
daraus  [mm] \integral{u'v dx}=uv- \integral{uv' dx} [/mm]
in diesem Fall nimmst du als u'=sinx  dann hast du u=-cosx  [mm] v=x^{2} [/mm] v'=2x
Und kommst auf das Integral x*cosx das behandelst du noch mal mit der Regel, jetzt v=x u'=cosx und dann hast du nur noch Integral von sinx.
Es hilft dir nichts, als zu üben, und wenn du nicht weiterweisst unseren klugen Rat zu holen.
Nicht entmutigen lassen, nach einiger Zeit wirds leichter! Auch das kleine 1 mal 1 hat vor Urzeiten mal viel Übung erfordert, und jetzt knnst dus doch!!

Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de