www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integralrechnung
Integralrechnung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung: Tipp bzw. Frage
Status: (Frage) beantwortet Status 
Datum: 11:14 Do 18.01.2007
Autor: Steni

Aufgabe
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Berechnen Sie den Flächeninhalt A der Fläche, die von den Graphen der Funktion f(x)= [mm] -1/9x^4+14 [/mm] und g(x)= [mm] x^2-4 [/mm] eingeschlossen wird.

Fertigen Sie hierzu eine Skizze der Graphen f und g an.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich hab für die obenstehende Aufgabe die geforderte Skizze gezeichnet und bin mir auch sicher, dass diese so richtig ist. Aber ich weiß nicht, wie ich jetzt am Besten als nächstes Vorgehen soll. Ich hoffe, mir kann hier jemand weiter helfen. Schon mal vielen Dank im Voraus.

Bis dann Steni

        
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:45 Do 18.01.2007
Autor: Stefan-auchLotti


> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> Berechnen Sie den Flächeninhalt A der Fläche, die von den
> Graphen der Funktion f(x)= [mm]-1/9x^4+14[/mm] und g(x)= [mm]x^2-4[/mm]
> eingeschlossen wird.
>  
> Fertigen Sie hierzu eine Skizze der Graphen f und g an.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> Ich hab für die obenstehende Aufgabe die geforderte Skizze
> gezeichnet und bin mir auch sicher, dass diese so richtig
> ist. Aber ich weiß nicht, wie ich jetzt am Besten als
> nächstes Vorgehen soll. Ich hoffe, mir kann hier jemand
> weiter helfen. Schon mal vielen Dank im Voraus.
>  
> Bis dann Steni

[mm] $\rmfamily \text{Hi,}$ [/mm]

[mm] $\rmfamily \text{Das kann anhand eines Beispiels deutlich gemacht werden.}$ [/mm]

[Dateianhang nicht öffentlich]

[mm] $\rmfamily \text{Hier siehst du im ersten Bild die Fläche zwischen x-Achse und }f(x)=x^2+3\text{ im Intervall }I=[0;2]\text{.}$ [/mm]

[mm] $\rmfamily \text{Im zweiten Bild die Fläche zwischen }g(x)=x\text{ und x-Achse, auch }I=[0;2]\text{.}$ [/mm]

[mm] $\rmfamily \text{Im dritten Bild die Fläche, die zwischen }g(x)\text{ und }f(x)\text{ liegt. Es ist also sinnvoll, die "`kleinere"' Fläche}$ [/mm]

[mm] $\rmfamily \text{von der "`größere"' abzuziehen. Es ist aber egal, ob du die eine von der anderen oder umgekehrt abziehst,}$ [/mm]

[mm] $\rmfamily \text{außer dem sich umdrehenden Vorzeichen bei der Berechnung.}$ [/mm]

[mm] $\rmfamily \text{Desweiteren sollst du ja eine Fläche zwischen zwei Graphen berechnen, hier repräsentieren dann die Schnitt-}$ [/mm]

[mm] $\rmfamily \text{stellen der beiden Funktionen also die Integrationsgrenzen. In deinem Falle }x_{1}=3 \text{ und }x_{2}=-3\text{.}$ [/mm]

[mm] $\rmfamily \text{Mach' es also entweder so:}$ [/mm]

[mm] $\rmfamily \int\limits^{3}_{-3}f\left(x\right)\,\mathrm{d}x-\int\limits^{3}_{-3}g\left(x\right)\,\mathrm{d}x$ [/mm]

[mm] $\rmfamily \text{Oder bilde die Differenzfunktion }f(x)-g(x) \text{ (oder auch }g(x)-f(x)\text{, das ist letztendlich irrelevant).}$ [/mm]

[mm] $\rmfamily \int\limits^{3}_{-3}f\left(x\right)-g\left(x\right)\,\mathrm{d}x$ [/mm]

[mm] $\rmfamily \text{Denke aber daran, die Berechnung sicherheitshalber in Betragstriche zu setzen, da es um Flächeninhalt geht.}$ [/mm]

[mm] $\rmfamily \text{Gruß, Stefan.}$ [/mm]

Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de