www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integralrechnung
Integralrechnung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung: kompliziertes Integral
Status: (Frage) beantwortet Status 
Datum: 18:52 Do 24.05.2007
Autor: Fabe.

Aufgabe
Berechnen Sie das unbestimmte Integral [mm] \integral_{}^{}{(\wurzel{1+x}-1 )/ (\wurzel{1+x} + 1) dx}. [/mm]

Hi Leute,
also ich habe hier diese schöne Aufgabe mit dem Integral und schon vieles rumprobiert, komme aber nicht auf die Lösung, die Derive mir gibt:  
4·LN( [mm] \wurzel{(x + 1)} [/mm] + 1) - 4· [mm] \wurzel{(x + 1)} [/mm] + x.
Also, wenn jemand hier Lust hat sich daran zu probieren und auf das Ergebnis kommt würde ich mir sehr freuen!


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integralrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:04 Do 24.05.2007
Autor: TRANSLTR

Ich kann dir einen gewissen Ansatz geben, vielleicht kommst du dann weiter.

[mm] \wurzel{x+1} [/mm] kann du durch y ersetzen. Dann musst du nur noch
[mm] \integral{f(x) dx} \bruch{y-1}{y+1} [/mm] berechnen, und zwar mit der Partialbruchzerlegungsmethode. Da diese Aufgabe aber auch eine Substitution drin hat, muss die Ableitung von y auch noch reinkommen!
Frag ruhig, wenn du nicht weisst wie das geht.


Bezug
        
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:52 Do 24.05.2007
Autor: schachuzipus

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo fabe,

du kannst das Integral zuerst etwas umformen und in Teilintegrale aufteilen:

$\integral{\frac{\wurzel{1+x}-1 }{\wurzel{1+x}+1}dx}=\integral{\frac{(\wurzel{1+x}-1)\red{\cdot{}( \wurzel{1+x}-1)}}{(\wurzel{1+x}+1)\red{\cdot{}(\wurzel{1+x}-1)}}dx}$ so erweitern, dass du die 3te binom. Formel im Nenner hast

$=\int{\frac{(\sqrt{1+x}-1)^2}{1+x-1}dx=\int{\frac{1+x-2\sqrt{1+x}+1}{x}dx}=\int{\frac{x+2}{x}dx}-2\int{\frac{\sqrt{1+x}}{x}dx}$

$=\int{1+\frac{2}{x}dx}-2\int{\frac{\sqrt{1+x}}{x}dx}=\int{1dx}+2\int{\frac{1}{x}dx}-2\int{\frac{\sqrt{1+x}}{x}dx}$

Die ersten beiden Integrale machste mit links,
das hintere Integral kannst du nun mit der Substitution $u:=\sqrt{1+x}$ verarzten

Damit ist $x=u^2-1$ und $\frac{dx}{du}=2u\Rightarrow dx=2u\cdot{}du$

Das nun im letzten Integral ersetzen ( die vorderen schreibe ich nicht auf)

$=..=-2\int{\frac{u}{u^2-1}2udu}=-4\int{\frac{u^2}{u^2-1}du}=-4\int{\frac{u^2-1+1}{u^2-1}du}=-4\int{1+\frac{1}{u^2-1}du}=-4\int{1du}-4\int{\frac{1}{(u+1)(u-1)}du}$

Den Bruch im letzen Integral kannst du nun mittels Partialbruchzerlegung zu einer Summe vereinfachen und dann alles integrieren.

Aber kein Integral vergessen ;-)

Und die substituierten nachher resubstituieren!!

Gruß

schachuzipus

Bezug
        
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:46 Do 24.05.2007
Autor: schachuzipus

Hallo nochmal,

es geht schneller mit dem Vorschlag von TRANSTLR

Substituiere direkt [mm] $u:=\sqrt{1+x}$ [/mm]

[mm] $\Rightarrow x=u^2-1\Rightarrow \frac{dx}{du}=2u\Rightarrow [/mm] dx=2udu$

Damit ist [mm] $\int{\frac{\sqrt{1+x}-1}{\sqrt{1+x}+1}dx}=\int{\frac{u-1}{u+1}\cdot{}2udu}=2\int{\frac{u^2-u}{u+1}du}$ [/mm]

Da kannste ne Polynomdivision [mm] $(u^2-u):(u+1)$ [/mm] machen und bekommst raus:

[mm] $=2\int{\left(u-2+\frac{2}{u+1}\right)du}$ [/mm]

Und das kannste ja problemlos integrieren.


Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de