www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integralrechnung
Integralrechnung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:45 Do 01.11.2007
Autor: missjanine

Aufgabe
[mm] f(x)=-\bruch{1}{4}x^2+k [/mm]
[mm] A=\bruch{64}{3} [/mm]

Wie bestimme ich k, sodass der Graph der Funktion f mit der x-Achse eine Fläche vom Flächeninhalt einschließt?

        
Bezug
Integralrechnung: erst Nullstellen
Status: (Antwort) fertig Status 
Datum: 14:49 Do 01.11.2007
Autor: Roadrunner

Hallo missjanine!


Du musst hier zunächst die Nullstellen [mm] $x_1$ [/mm] und [mm] $x_2$ [/mm] der Funktionsschar [mm] $f_k(x)$ [/mm] berechnen mit [mm] $f_k(x) [/mm] \ = \ [mm] -\bruch{1}{4}*x^2+k [/mm] \ = \ 0$ .

Anschließend ist folgendes Integral nach $k \ = \ ...$ umzustellen:
[mm] $$\integral_{x_1}^{x_2}{f_k(x) \ dx} [/mm] \ = \ [mm] \integral_{x_1}^{x_2}{-\bruch{1}{4}*x^2+k \ dx} [/mm] \ = \ [mm] \bruch{64}{3}$$ [/mm]

Gruß vom
Roadrunner


Bezug
                
Bezug
Integralrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:12 Do 01.11.2007
Autor: MontBlanc

Hi,

kann man es nicht auch so machen?

Nullstellen:

[mm] \bruch{1}{4}*x^2+k=0 [/mm]

[mm] x_{N1}=-2*\wurzel{-k} \wedge x_{N2}=2*\wurzel{-k}, k\in\IR, [/mm] k [mm] \le [/mm] $0$


[mm] \integral_{x_{N1}}^{x_{N2}}{-\left(\bruch{1}{4}*x^2+k\right) dx} [/mm] =

[mm] \integral_{-2*\wurzel{-k}}^{2*\wurzel{-k}}{-\left(\bruch{1}{4}*x^2+k\right)dx} [/mm]


= [mm] \bruch{8*(-k)^{\bruch{3}{2}}}{3} [/mm]

Das ganze setzte man gleich [mm] \bruch{64}{3} [/mm] und erhält k=-4?


Mich verwirrt dabei nur, dass Du das Integral sofort gleich [mm] \bruch{64}{3} [/mm] gesetzt hast, ändert das irgendetwas am Rechenweg, oder würde man trotzdem so vorgehen, wie ich es getan habe?

Lg

Bezug
                        
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:44 Do 01.11.2007
Autor: Teufel

Hi!

Es ändert nichts. Kannst den gegebenen Flächeninhalt sofort oder erst später hinschreiben. Allerdings hätte um das Integral entweder noch Betragsstriche gemusst, oder man hätte es gleich [mm] -\bruch{64}{3} [/mm] setzen müssen, da die Fläche ja unterhalb der x-Achse ist.

Bezug
                                
Bezug
Integralrechnung: Fläche oberhalb der x-Achse
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:47 Do 01.11.2007
Autor: Roadrunner

Hallo Teufel!


> da die Fläche ja unterhalb der x-Achse ist.

[notok] Das stimmt nicht. Die Fläche liegt eindeutig oberhalb der x-Achse, da es sich um eine nach unten geöffnete Parabel handelt.


Gruß vom
Roadrunner


Bezug
                                        
Bezug
Integralrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:50 Do 01.11.2007
Autor: Teufel

Ah, klar ;) hätte mir vielleicht dir Uraufgabe angucken sollen... habe mit eXes Version gerechnet.

Dann solltest du aber auf k=4 kommen, eXe, da vor deinem Bruch noch ein - fehlt!

Danke für den Hinweis.

Bezug
                        
Bezug
Integralrechnung: Nullstellen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:49 Do 01.11.2007
Autor: Roadrunner

Hallo eXeQteR!


Du hast Dich bei den Nullstellen etwas mit dem Vorzeichen vertan (da Du wohl ein Minuszeichen unterschlagen hast). Die Nullstellen lauten:
[mm] $$x_{N1/2} [/mm] \ = \ [mm] \pm2*\wurzel{\red{+}k}$$ [/mm]

Gruß vom
Roadrunner


Bezug
                                
Bezug
Integralrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:30 Do 01.11.2007
Autor: MontBlanc

huch, 'tschuldigung... Hab ich übersehen.

Danke für den Hinweis.

Lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de