www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integralrechnung
Integralrechnung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung: "Frage"
Status: (Frage) beantwortet Status 
Datum: 16:08 Di 08.02.2005
Autor: sk8eagle87

hallo!
ich habe ein problem mit einer aufgabe. sie lautet wie folgt:
f(x)=  [mm] \bruch{x}{x²+k²} [/mm] k [mm] \ge [/mm] 0
zeige, dass der inhalt der fläche, die der graph von f mit der 1. Achse im 1.Quadranten zwischen der stelle x=0 und der extremstelle von f von k unabhängig ist.

Extremstelle: [mm] \pm [/mm] k

wenn ich das richtig verstanden hab muss ich jetzt einfach das intgral berechnen von 0 bis k. dabei müsste dann ein ergebnis rauskommen das kein k enthält. aber ich bekomme den term nicht aufgeleitet :(

wäre cool wenn mir da wer helfen würde.

danke schonmal im vorraus

mfg

sk8eagle87

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:26 Di 08.02.2005
Autor: Bastiane

Hallo sk8eagle87!
[willkommenmr]

> hallo!
>  ich habe ein problem mit einer aufgabe. sie lautet wie
> folgt:
>  f(x)=  [mm]\bruch{x}{x²+k²}[/mm] k [mm]\ge[/mm] 0
>  zeige, dass der inhalt der fläche, die der graph von f mit
> der 1. Achse im 1.Quadranten zwischen der stelle x=0 und
> der extremstelle von f von k unabhängig ist.
>  
> Extremstelle: [mm]\pm[/mm] k
>
> wenn ich das richtig verstanden hab muss ich jetzt einfach
> das intgral berechnen von 0 bis k. dabei müsste dann ein
> ergebnis rauskommen das kein k enthält. aber ich bekomme
> den term nicht aufgeleitet :(

Deine Theorie stimmt so weit! [daumenhoch]

du willst also berechnen:
[mm] \integral_{0}^{k}{\bruch{x}{x^2+k^2}dx} [/mm]
nun substituierst du [mm] u=x^2+k^2 [/mm] und erhältst:
[mm] [\bruch{1}{2}ln(x^2+k^2)]_{x=0}^{k} [/mm]
das kannst du nun einfach weiterberechnen. Zum Schluss erhältst du dann als Ergebnis [mm] \bruch{1}{2}ln [/mm] 2, was offensichtlich unabhängig von k ist. :-)

Viele Grüße
Bastiane
[cap]


Bezug
                
Bezug
Integralrechnung: "Rückfrage"
Status: (Frage) beantwortet Status 
Datum: 16:35 Di 08.02.2005
Autor: sk8eagle87

hi
danke für die antwort. aber könntest du vielleicht die einzelnen schritte dazu schreiben. das mit der substitution hab ich noch nicht so richtig verstanden.

danke im voraus

mfg
sk8eagle87

Bezug
                        
Bezug
Integralrechnung: Substitution
Status: (Antwort) fertig Status 
Datum: 17:22 Mi 09.02.2005
Autor: Loddar

Hallo sk8eagle87 !!

Wir haben ja:
[mm] $\integral_{0}^{k}{\bruch{x}{x^2 + k^2} \ dx}$ [/mm]

Wie Bastiane geschrieben hat, substituieren wir: $u \ = \ [mm] x^2 [/mm] + [mm] k^2$ [/mm]

Damit wird auch: $u’ \ = \ [mm] \bruch{du}{dx} [/mm] \ = \ 2x$     [mm] $\gdw$ [/mm]     $dx \ = \ [mm] \bruch{du}{2x}$ [/mm]

[mm] $\Rightarrow$ [/mm]
[mm] $\integral_{x=0}^{x=k}{\bruch{x}{x^2+k^2} \ dx}$ [/mm]

$= \ [mm] \integral_{x=0}^{x=k}{\bruch{x}{u} \ \bruch{du}{2x}}$ [/mm]

Kürzen:
$= \ [mm] \integral_{x=0}^{x=k}{\bruch{1}{2u} \ du}$ [/mm]

$= \ [mm] \bruch{1}{2} [/mm] * [mm] \integral_{x=0}^{x=k}{\bruch{1}{u} \ du}$ [/mm]

$= \ [mm] \bruch{1}{2} [/mm] * [mm] \left[ \ln \left| u \right| \ \right]_{x=0}^{x=k}$ [/mm]

Re-Substitution:
$= \ [mm] \bruch{1}{2} [/mm] * [mm] \left[ \ln \left| x^2 + k^2 \right| \ \right]_{0}^{k}$ [/mm]


Damit hast du genau das Ergebnis von Bastiane.
Nun alle Klarheiten beseitigt? ;-)


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de