www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integralrechnung
Integralrechnung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung: Integralrechnung;Reihen
Status: (Frage) beantwortet Status 
Datum: 21:43 Di 03.02.2009
Autor: Tico

hi,

ich hab folgende aufgabe:
Berechnen Sie
[mm] \integral_{0}^{0.1}{\bruch{ln(1+x)}{x} dx} [/mm] mit dem tolerierten Fehler [mm] \pm [/mm] 0,0001.

Jetzt muss ich das INtegral der Funktion als Reihe darstellen. Wie mache ich das? Ist das überhaupt der richtige Ansatz? Muss ich jetzt erst integrieren bevor ich eine reihe bilde?
Wäre nett wenn ihr mir ein wenig auf die Sprünge helfen könntet



        
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:01 Di 03.02.2009
Autor: abakus


> hi,
>
> ich hab folgende aufgabe:
> Berechnen Sie
> [mm]\integral_{0}^{0.1}{\bruch{ln(1+x)}{x} dx}[/mm] mit dem
> tolerierten Fehler [mm]\pm[/mm] 0,0001.
>  
> Jetzt muss ich das INtegral der Funktion als Reihe
> darstellen. Wie mache ich das? Ist das überhaupt der
> richtige Ansatz? Muss ich jetzt erst integrieren bevor ich
> eine reihe bilde?
>  Wäre nett wenn ihr mir ein wenig auf die Sprünge helfen
> könntet
>  
>  

Hallo, mache doch mal die Taylorentwicklung für  ln(1+x) in der Umgebung von der Stelle x=0, teile dann das Erhaltene durch x...
Gruß Abakus


Bezug
                
Bezug
Integralrechnung: Taylorreihe
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:14 Di 03.02.2009
Autor: Tico

Das wäre dann

ln(1+x)= [mm] 1+x+\bruch{x^2}{2!}+\bruch{x^3}{3!}+....+\bruch{x^n}{n!}+\bruch{ln(1+x)^\delta}{(n+1)!}x^n+1 [/mm]
x=0, a=0 [mm] \Rightarrow \delta \in \(0,0) [/mm]

ist das so erstmal richtig ?

Bezug
                        
Bezug
Integralrechnung: Taylorreihe
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:24 Di 03.02.2009
Autor: Tico

Muss man die Funktion nicht ersteinmal integrieren und dann die Taylorreihe aufstellen?

Bezug
        
Bezug
Integralrechnung: Taylorreihe
Status: (Frage) beantwortet Status 
Datum: 22:35 Di 03.02.2009
Autor: Tico

ich habe nochmal  genauer in meine UNterlagen geguckt und folgendes gefunden:

[mm] \integral_{0}^{0.1}{\bruch{ln(1+x)}{x}} [/mm] dx (tolerierter Fehler +- 0,0001)

= [mm] \integral_{0}^{0.1}{\bruch{1+x+\bruch{x^2}{2!}+\bruch{x^4}{4!}+.....}{x}}dx [/mm]  

Bloß wie gehts weiter


Bezug
                
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:48 Di 03.02.2009
Autor: MacMath

Nun du weißt doch wie man Polynome integriert (bzw. dass das Integral ein
lineares Integral ist).

Was bedeutet das für dich?

Nachtrag:
Übrigens ist deine Reihe so nicht korrekt!
Die von dir verwendete Reihe ist die Exponentialreihe, liefert also nicht
ln(1+x) sondern [mm] e^x [/mm]

Bezug
                        
Bezug
Integralrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:00 Di 03.02.2009
Autor: Tico

kommt dann

( [mm] \bruch{1}{2}+\bruch{x^3}{4!*3}+\bruch{x^5}{6!*5}) [/mm] und dann für x die ober und untere grenze einsetzen
ist das überhaupt richitg?

Bezug
                                
Bezug
Integralrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:08 Di 03.02.2009
Autor: MacMath

Nein.. suche zunächst einmal die richtige Potenzreihenentwicklung des Logarithmus... zb []hier bei wikipedia

Und dann setz diese ein wie du es eben gemacht hat.

Zieh anschließend den Bruch auseinander, fällt dir was auf?

Bezug
                                        
Bezug
Integralrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:25 Di 03.02.2009
Autor: Tico

Ich habe mir das bei wiki durchgelesen und weiß überhaupt nicht wie ich da anfangen soll

Bezug
                                                
Bezug
Integralrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:35 Di 03.02.2009
Autor: MacMath

Kennzeichne Fragen bitte als solche!

Tue was du eben bereits getan hast, nur nimm die richtige Reihe ;)

$ [mm] \integral_{0}^{0.1}{\bruch{ln(1+x)}{x}} [/mm]  dx=  [mm] \integral_{0}^{0.1}{\bruch{x-\bruch{x^2}{2}+\bruch{x^3}{3}-..+.....}{x}}dx [/mm] $

Dann überlege ob der Nenner nicht einfach weggekürzt werden kann.

Bezug
                                                        
Bezug
Integralrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:42 Di 03.02.2009
Autor: Tico

ah ok jetzt hab ichs gesehen


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de