www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integralrechnung
Integralrechnung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung: Unbestimmtes Integral bilden
Status: (Frage) beantwortet Status 
Datum: 16:55 Do 19.03.2009
Autor: Ceryni

Aufgabe
Bilden Sie das unbestimmte Integral:

f(x)= [mm] 4x^3 [/mm]

f(x)= [mm] 2x^2+0,5x-3 [/mm]

f(x)= 2

Ich bin gerade etwas irritiert, was ein unbestimmtes Integral sein soll XD

Sollte das also in etwa so aussehen?

[mm] \integral_{}^{}{\left[ x^4 \right] dx} [/mm]

[mm] \integral_{}^{}{\left[ \bruch{2}{3}x^3+\bruch{1}{4}x^2-3x \right] dx} [/mm]

[mm] \integral_{}^{}{\left[2x \right]dx} [/mm]



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integralrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:02 Do 19.03.2009
Autor: xPae

Hallo ;),

>  Ich bin gerade etwas irritiert, was ein unbestimmtes
> Integral sein soll XD

Ein unbestimmtes Integral, ist ein Integral ohne Grenzen.

>
> Sollte das also in etwa so aussehen?
>  
> [mm]\integral_{}^{}{\left[ x^4 \right] dx}[/mm]
>  
> [mm]\integral_{}^{}{\left[ \bruch{2}{3}x^3+\bruch{1}{4}x^2-3x \right] dx}[/mm]
>  
> [mm]\integral_{}^{}{\left[2x \right]dx}[/mm]
>  

Wie du es aufgeschrieben hast ist es falsch! Die Stammfunktionen sind zwar richtig gebildet, aber was macht das Integralzeichen davor?
Beispiel I)
[mm] \integral_{}^{}{4x³ dx} [/mm] = [mm] \left[ x^4 \right] [/mm] + C    

Bei unbestimmten Integralen ist es empfehlenswert eine Integrationskonstante C hinzuzuschreiben.

>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Lg

xPae

Bezug
                
Bezug
Integralrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:47 Do 19.03.2009
Autor: Ceryni


> Wie du es aufgeschrieben hast ist es falsch! Die
> Stammfunktionen sind zwar richtig gebildet, aber was macht
> das Integralzeichen davor?
>  Beispiel I)
>  [mm]\integral_{}^{}{4x³ dx}[/mm] = [mm]\left[ x^4 \right][/mm] + C    
>
> Bei unbestimmten Integralen ist es empfehlenswert eine
> Integrationskonstante C hinzuzuschreiben.
>  >

> >
> > Ich habe diese Frage in keinem Forum auf anderen
> > Internetseiten gestellt.
>
>
> Lg
>  
> xPae


Dankeschön! Echt bemerkenswert wie schnell einem hier geholfen wird :)Da kann die Prüfung ja bald kommen XD

Bezug
        
Bezug
Integralrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:10 Do 19.03.2009
Autor: fred97


> Bilden Sie das unbestimmte Integral:
>  
> f(x)= [mm]4x^3[/mm]
>  
> f(x)= [mm]2x^2+0,5x-3[/mm]
>  
> f(x)= 2
>  Ich bin gerade etwas irritiert, was ein unbestimmtes
> Integral sein soll XD



Das unbestimmte Integral  [mm] \integral_{}^{}{f(x) dx} [/mm] ist einfach eine Stammfunktion von f (wenn f überhaupt eine solche besitzt)

FRED




>
> Sollte das also in etwa so aussehen?
>  
> [mm]\integral_{}^{}{\left[ x^4 \right] dx}[/mm]
>  
> [mm]\integral_{}^{}{\left[ \bruch{2}{3}x^3+\bruch{1}{4}x^2-3x \right] dx}[/mm]
>  
> [mm]\integral_{}^{}{\left[2x \right]dx}[/mm]
>  
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Integralrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:52 Do 19.03.2009
Autor: abakus


> > Bilden Sie das unbestimmte Integral:
>  >  
> > f(x)= [mm]4x^3[/mm]
>  >  
> > f(x)= [mm]2x^2+0,5x-3[/mm]
>  >  
> > f(x)= 2
>  >  Ich bin gerade etwas irritiert, was ein unbestimmtes
> > Integral sein soll XD
>
>
>
> Das unbestimmte Integral  [mm]\integral_{}^{}{f(x) dx}[/mm] ist
> einfach eine Stammfunktion von f

Hallo,
das ist nicht ganz richtig. Das unbestimmte Integral ist nicht "eine Stammfunktion", sondern die Menge aller Stammfunktionen. Der Zusatz "+ C" ist also bei der Ergebnisangabe unbedingt erforderlich.
Gruß Abakus


> (wenn f überhaupt eine
> solche besitzt)
>  
> FRED
>  
>
>
>
> >
> > Sollte das also in etwa so aussehen?
>  >  
> > [mm]\integral_{}^{}{\left[ x^4 \right] dx}[/mm]
>  >  
> > [mm]\integral_{}^{}{\left[ \bruch{2}{3}x^3+\bruch{1}{4}x^2-3x \right] dx}[/mm]
>  
> >  

> > [mm]\integral_{}^{}{\left[2x \right]dx}[/mm]
>  >  
> >
> >
> > Ich habe diese Frage in keinem Forum auf anderen
> > Internetseiten gestellt.  


Bezug
                        
Bezug
Integralrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:03 Do 19.03.2009
Autor: fred97


> > > Bilden Sie das unbestimmte Integral:
>  >  >  
> > > f(x)= [mm]4x^3[/mm]
>  >  >  
> > > f(x)= [mm]2x^2+0,5x-3[/mm]
>  >  >  
> > > f(x)= 2
>  >  >  Ich bin gerade etwas irritiert, was ein unbestimmtes
> > > Integral sein soll XD
> >
> >
> >
> > Das unbestimmte Integral  [mm]\integral_{}^{}{f(x) dx}[/mm] ist
> > einfach eine Stammfunktion von f
> Hallo,
> das ist nicht ganz richtig. Das unbestimmte Integral ist
> nicht "eine Stammfunktion", sondern die Menge aller
> Stammfunktionen. Der Zusatz "+ C" ist also bei der
> Ergebnisangabe unbedingt erforderlich.


Wer sagt denn sowas ??

Die Auffassungen gehen hier auseinander.

Für manche bezeichnet [mm]\integral_{}^{}{f(x) dx}[/mm]  eine Stammfunktion von f, für andere bedeutet [mm]\integral_{}^{}{f(x) dx}[/mm]  die Menge aller Stammfunktionen von f.

Wenn man damit umgehen kann ist es nicht entscheidend welcher Auffasung man folgt.

z.B. bedeutet

  [mm]\integral_{}^{}{f(x)g'(x) dx} = f(x)g(x) -\integral_{}^{}{f'(x)g(x)dx}[/mm]

man erhält eine Stammfunktion von$fg'$ indem ich eine Stammfunktion von $f'g$ von $fg$ abziehe.


Jedenfalls handhaben wir das an Universitäten so.

FRED







>  Gruß Abakus
>  
>
> > (wenn f überhaupt eine
> > solche besitzt)
>  >  
> > FRED
>  >  
> >
> >
> >
> > >
> > > Sollte das also in etwa so aussehen?
>  >  >  
> > > [mm]\integral_{}^{}{\left[ x^4 \right] dx}[/mm]
>  >  >  
> > > [mm]\integral_{}^{}{\left[ \bruch{2}{3}x^3+\bruch{1}{4}x^2-3x \right] dx}[/mm]
>  
> >  

> > >  

> > > [mm]\integral_{}^{}{\left[2x \right]dx}[/mm]
>  >  >  
> > >
> > >
> > > Ich habe diese Frage in keinem Forum auf anderen
> > > Internetseiten gestellt.  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de