Integralrechnung < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:24 So 27.09.2009 | Autor: | coucou |
Aufgabe | Wie groß ist die Fläche zw. dem graphen und der Normalen im Wendepunkt von f?
[mm] f(x)=-x^3 [/mm] + x |
Also, ich hab jetzt erstmal den Wendepunkt ausgerechnet. Also Zweite Ableitung von f(x) gleich Null und dritte ungleich Null. Dann hab ich für den WP (0/0). In meinen Lösungen steht allerdings (0/0,1). Wie kann das sein? Außerdem hab ich, wenn ich dann weiterrechne und den Punkt, also 0 in die erste Ableitung einsetze um m zu kriegen 1 raus. In den Lösungen steht aber -1 ! Was hab ich falsch gemacht?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:30 So 27.09.2009 | Autor: | abakus |
> Wie groß ist die Fläche zw. dem graphen und der Normalen
> im Wendepunkt von f?
>
> [mm]f(x)=-x^3[/mm] + x
> Also, ich hab jetzt erstmal den Wendepunkt ausgerechnet.
> Also Zweite Ableitung von f(x) gleich Null und dritte
> ungleich Null. Dann hab ich für den WP (0/0). In meinen
> Lösungen steht allerdings (0/0,1). Wie kann das sein?
In der Musterlösung steht Unfug.
> Außerdem hab ich, wenn ich dann weiterrechne und den
> Punkt, also 0 in die erste Ableitung einsetze um m zu
> kriegen 1 raus. In den Lösungen steht aber -1 ! Was hab
> ich falsch gemacht?
Nichts. Es sei denn, du hast bereits die Funktionsgleichung falsch übernommen.
Gruß Abakus
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 15:42 So 27.09.2009 | Autor: | coucou |
ok, da ich die Funktionsgleichung nicht falsch übernommen hab, wird es wohl falsch in den Lösungen stehen.
Allerdings hab ich jetzt noch eine Frage. Ich hab ja jetzt [mm] -x^3+x [/mm] und 1x als Funktionen. Also wollte ich jetzt deren Schnittpunkte ausrechnen, um mein Intervall zu haben. Beim Schnittpunkt komme ich allerdings auf Null und wenn man sich die Graphen zeichnet sieht man, dass das auch stimmt ( ist ja auch logisch, wenn der Wendepunkt da ist). Was nehme ich also als Intervall? Bzw. welche Fläche ist da gemeint? http://www.walterzorn.de/grapher/grapher.htm ( die Graphen)
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:48 So 27.09.2009 | Autor: | abakus |
> ok, da ich die Funktionsgleichung nicht falsch übernommen
> hab, wird es wohl falsch in den Lösungen stehen.
> Allerdings hab ich jetzt noch eine Frage. Ich hab ja jetzt
> [mm]-x^3+x[/mm] und 1x als Funktionen. Also wollte ich jetzt deren
> Schnittpunkte ausrechnen, um mein Intervall zu haben. Beim
> Schnittpunkt komme ich allerdings auf Null und wenn man
> sich die Graphen zeichnet sieht man, dass das auch stimmt (
> ist ja auch logisch, wenn der Wendepunkt da ist). Was nehme
> ich also als Intervall? Bzw. welche Fläche ist da gemeint?
> http://www.walterzorn.de/grapher/grapher.htm ( die Graphen)
Hallo,
langsam kommt Licht in die Aufgabe. Den Anstieg +1 hat die Tangente im Punkt (0|0).
Die Normale steht aber senkrecht auf der Tangente und hat damit tatsächlich den Anstieg -1, die Normalengleichung lautet also y=-x.
Diese Gerade hat außer im Ursprung noch zwei weitere Schnittpunkte mit dem Graphen.
Gruß Abakus
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 16:33 So 27.09.2009 | Autor: | coucou |
ok, also hab ich dann jetzt die Steigung im Punkt (0/0) genutzt, um m1 x m2 = -1 rechnen zu können. Dann hab ich auch -1 raus. Klar. Als Schnittpunkte hab´ ich dann 0, und + und - Wurzel 2.
Hab also meine Intervalle :)
Allerdings hab ich noch eine grundsätzliche Frage. Kann ich immer davon ausgehen, dass eine Gerade oder eine Normale, wie auch immer,orthogonal zur Tangente sind? Und somit m1 mal ... anwenden?
|
|
|
|
|
Eine Normale ist per Definition eine Gerade, die orthogonal zu einer anderen verläuft.
Das gleiche gilt übrigens auch in anderen Zusammenhängen: Ein Normalenvektor steht z.B. senkrecht auf einer Ebene.
Gruß, MatheOldie
|
|
|
|