www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Integralrechnung,Symmetrie
Integralrechnung,Symmetrie < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung,Symmetrie: Aufgabe,Problem
Status: (Frage) beantwortet Status 
Datum: 22:21 Mi 10.11.2004
Autor: bionda

Bei der folgenden Aufgabe habe ich eine nadere Lösung als das Lösungsbuch herausbekommen und finde meinen Fehler nicht (vielleicht ist es ja auch ein Fehler im Buch ;) )
Aufgabe:
Das Integral von 1-3x dx von 2 bis 0 (also untere Grenze = 2, obere = 0), ergibt bei mir als Lösung 4, im Lösungsbuch jedoch steht -4... Hilfe...

2. Problem:
Das Integral von 2x(hoch 7)- x(hoch5)+x(hoch4)+3x+1 dx von 1- bis 1, soll angeblich laut Lehrer Null ergeben, da punktsymmetrisch, doch da nicht alle Exponenten (hier in der Klammer geschrieben) ungerade sind, verstehe ich nicht, weshalb der Graph punktsymmetrisch ist...Ich hoffe das kann mir jemand erklären....
Schon mal danke im Voraus.
     :)))

        
Bezug
Integralrechnung,Symmetrie: Antwort
Status: (Antwort) fertig Status 
Datum: 22:44 Mi 10.11.2004
Autor: cremchen

Halli hallo!

>  Das Integral von 1-3x dx von 2 bis 0 (also untere Grenze =
> 2, obere = 0), ergibt bei mir als Lösung 4, im Lösungsbuch
> jedoch steht -4... Hilfe...

Hier mußt du ja zunächst die Integrationsgrenzen vertauschen, da du ja von 0 bis 2 integrieren magst, und nicht umgekehrt!
Dabei mußt du jedoch beachten, dass sich das Vorzeichen ändert, d.h. es gilt: [mm] \integral_{a}^{b}{f(x) dx}=-\integral_{b}^{a}{f(x) dx} [/mm]
[ok]
Damit kommst du dann auch auf die im Buch angegebene Lösung!
(Außerdem kannst du dir auch überlegen, dass die Funktion in deinem Intervall hauptsächlich unterhalb der x-Achse verläuft, und dein Flächeninhalt somit negativ sein muß)

> Das Integral von 2x(hoch 7)- x(hoch5)+x(hoch4)+3x+1 dx von
> 1- bis 1, soll angeblich laut Lehrer Null ergeben, da
> punktsymmetrisch, doch da nicht alle Exponenten (hier in
> der Klammer geschrieben) ungerade sind, verstehe ich nicht,
> weshalb der Graph punktsymmetrisch ist...

also das verstünde ich auch nicht! Da muß sich dein Lehrer vertan haben und es muß [mm] x^{3} [/mm] statt [mm] x^{4} [/mm] heißen!

Nun wäre die Funktion [mm] f(x)=2*x^{7}-x^{5}+x^{3}+3*x+1 [/mm] punktsymmetrisch, da immer gilt f(-x)=-f(x)
die Funktion ist immer noch nicht punktsymmetrisch, weil [mm] $+1=+1*x^0$, [/mm] also gerader Exponent.
[mm] f(x)=2*x^{7}-x^{5}+x^{3}+3*x [/mm] wäre punktsymmetrisch.


Ich hoffe ich konnte dir weiterhelfen!

Liebe Grüße
Ulrike

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de