www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integralrechnung sin(x)
Integralrechnung sin(x) < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung sin(x): Tipp
Status: (Frage) beantwortet Status 
Datum: 09:47 So 04.03.2007
Autor: cluten09

Aufgabe
Berechnen Sie aINTEGRALb f(x)dx. Zeichnen sie dann den Graphen von f und veranschaulichen Sie das Integral mit der Anwendung des oritentierten Flächeninhaltes.

Hallo,

Ich soll den Flächeninhalt einer Sinusfunktion ausrechen, und zwar im Integral von -Pi/2 bis 2Pi
Die Funktion lautet: f(x)=0,5+Sin(x)
Das Problem dabei ist das einige Teile in diesem Bereich über und andere Unterhalb der X-Achse liegen. Wie kriege ich nun die Nullstellen in diesem Bereich raus damit ich das ganze unterteilen kann? Oder gibt es einen Trick das zu umgehen?

Vielen Dank!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integralrechnung sin(x): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:10 So 04.03.2007
Autor: Slartibartfast

evtl hilft das:
https://www.vorhilfe.de/read?t=236472

Bezug
                
Bezug
Integralrechnung sin(x): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:26 So 04.03.2007
Autor: cluten09

Meine Sinusfunktion ist ja um 0,5 nach oben verschoben. Demenstsprechend verschieben sich auch die Nullstellen, leider nicht um 0,5. Wie komme ich jetzt in meinem Fall auf die Nullstellen in dem Intervall?

Bezug
                        
Bezug
Integralrechnung sin(x): Antwort
Status: (Antwort) fertig Status 
Datum: 11:40 So 04.03.2007
Autor: mathmetzsch

Hallo,

die Nullstellen sind doch bei deinem Integral völlig uninteressant. Du hast ja die Integrationsgrenzen gegeben. Also sehen wir uns das mal an:

[mm] \integral_{\bruch{-\pi}{2}}^{2\pi}{0,5+sin(x) dx} [/mm]
[mm] =|0,5x-cos(x)|_{\bruch{-\pi}{2}}^{2\pi} [/mm]
[mm] =0,5*2\pi-cos(2\pi)-(0,5*(\bruch{-\pi}{2})-cos(\bruch{-\pi}{2})) [/mm]
[mm] \approx [/mm] 2,927

Alles klar? Grüße, Daniel

Bezug
                                
Bezug
Integralrechnung sin(x): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:47 So 04.03.2007
Autor: cluten09

Genau so hatte ich es ausgerechnet, dann ist mir aufgefallen das ein Teil unterhalb der x-Achse liegt der andere oberhalb. Soweit ich weiß muss man das Integral dann aufteilen....!?

Bezug
                                        
Bezug
Integralrechnung sin(x): Antwort
Status: (Antwort) fertig Status 
Datum: 11:58 So 04.03.2007
Autor: Stefan-auchLotti


> Genau so hatte ich es ausgerechnet, dann ist mir
> aufgefallen das ein Teil unterhalb der x-Achse liegt der
> andere oberhalb. Soweit ich weiß muss man das Integral dann
> aufteilen....!?

[mm] $\bffamily \text{Hi,}$ [/mm]

[mm] $\bffamily \text{Du musst zwei Dinge unterscheiden: den Flächeninhalt zwischen }x\text{-Achse und Funktion zu berechnen und }$ [/mm]

[mm] $\bffamily \text{ein Integral zu berechnen. Das sind zwei völlig unterschiedliche Dinge! Beim Berechnen des Integrals, was du im Übrigen}$ [/mm]

[mm] $\bffamily \text{tun sollst, musst du keinerlei Rücksicht auf Nullstellen nehmen, sondern ausschließlich die Stammfunktion bilden und }$ [/mm]

[mm] $\bffamily \text{die Grenzen einsetzen.}$ [/mm]

[mm] $\bffamily \text{Gruß, Stefan.}$ [/mm]

Bezug
                                                
Bezug
Integralrechnung sin(x): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:05 So 04.03.2007
Autor: cluten09

-.-
Stimmt du hast Recht! Danke an alle ;)
Flächeninhalt hätt ich jetzt auch berechen könne, hab die Nullstellen in dem Bereich und die Teilflächen unterteilt. War garnicht einfach und hat ganz schön gedauert, dabei völlig umsonst^^
Einen wunderschönen sonnigen Tag wünsche ich noch :)

Bezug
        
Bezug
Integralrechnung sin(x): Graph der Funktion
Status: (Antwort) fertig Status 
Datum: 12:28 So 04.03.2007
Autor: informix

Hallo cluten09 und [willkommenmr],

> Berechnen Sie aINTEGRALb f(x)dx. Zeichnen sie dann den
> Graphen von f und veranschaulichen Sie das Integral mit der
> Anwendung des oritentierten Flächeninhaltes.
>  Hallo,
>  
> Ich soll den Flächeninhalt einer Sinusfunktion ausrechen,
> und zwar im Integral von -Pi/2 bis 2Pi
>  Die Funktion lautet: f(x)=0,5+Sin(x)
>  Das Problem dabei ist das einige Teile in diesem Bereich
> über und andere Unterhalb der X-Achse liegen. Wie kriege
> ich nun die Nullstellen in diesem Bereich raus damit ich
> das ganze unterteilen kann? Oder gibt es einen Trick das zu
> umgehen?
>  

Sieht deine Darstellung so aus?

[Dateianhang nicht öffentlich]

Die Nullstelle kannst du so bestimmen:
[mm] $0,5+\sin [/mm] x=0 [mm] \gdw \sin [/mm] x=-0,5 [mm] \gdw x=\arcsin(-0,5)$ [/mm]
Achtung:
Taschenrechner auf Bogenmaß (RAD) umstellen!

Gruß informix

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de