Integralsatz von Gauß < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:06 So 14.12.2008 | Autor: | Joan2 |
Aufgabe | Berechnen Sie
[mm] \integral_{S_{1}(0)}^{}<{f(z), \nu(z)> \sigma (dz)}
[/mm]
für [mm] f:\IR^{n}\backslash [/mm] {0} [mm] \to \IR^{n} [/mm] definiert durch
f(x) := [mm] \bruch{x}{\parallel x \parallel^{2}} [/mm]
|
Ich habe bereits einiges ausprobiert, aber bin jetzt an einem Punkt angekommen, wo ich nicht mehr weiter weiß :(
[mm] \integral_{X}^{}{divf(x) d \lamda^{n}} [/mm] = [mm] \integral_{\partialX}^{}{ \sigma (dz)}
[/mm]
Einsetzen:
[mm] \Rightarrow \integral_{X}^{}{\bruch{-x_1^2+x_2^2+.....+x_n^2}{(x_1^2+x_2^2+\ldots+x_n^2)^{2}}+\bruch{x_1^2-x_2^2+ \ldots +x_n^2}{(x_1^2+x_2^2+ \ldots +x_n^2)^{2}}+ \ldots + \bruch{x_1^2+x_2^2+.....-x_n^2}{(x_1^2+x_2^2+.....+x_n^2)^{2}} d \lamda^{n}} [/mm] = [mm] \integral_{\partialX}^{}{<\bruch{1}{(z_1^2+z_2^2+.....+z_n^2)}*\vektor{z_1 \\ z_2\\...\\z_n} , \vektor{z_1 \\ z_2\\...\\z_n}> \sigma (dz)} [/mm] mit [mm] \nu(z) [/mm] = z
[mm] \Rightarrow \integral_{X}^{}{\bruch{-x_1^2+x_2^2+.....+x_n^2}{(x_1^2+x_2^2+\ldots+x_n^2)^{2}}+\bruch{x_1^2-x_2^2+ \ldots +x_n^2}{(x_1^2+x_2^2+ \ldots +x_n^2)^{2}}+ \ldots + \bruch{x_1^2+x_2^2+.....-x_n^2}{(x_1^2+x_2^2+.....+x_n^2)^{2}} d \lamda^{n}} [/mm] = [mm] \integral_{\partialX}^{}{\bruch{1}{(z_1^2+z_2^2+.....+z_n^2)}*\vektor{z_1 \\ z_2\\...\\z_n}^{2} \sigma (dz)} [/mm]
Und nun? Ich weiß irgendwie nicht weiter :(
Hoffe jemand kann mir weiter helfen
Liebe Grüße
Joan
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:04 Mo 15.12.2008 | Autor: | rainerS |
Hallo Joan!
> Berechnen Sie
>
> [mm]\integral_{S_{1}(0)}^{}<{f(z), \nu(z)> \sigma (dz)}[/mm]
>
> für [mm]f:\IR^{n}\backslash[/mm] {0} [mm]\to \IR^{n}[/mm] definiert durch
>
> f(x) := [mm]\bruch{x}{\parallel x \parallel^{2}}[/mm]
>
>
>
> Ich habe bereits einiges ausprobiert, aber bin jetzt an
> einem Punkt angekommen, wo ich nicht mehr weiter weiß :(
>
> [mm]\integral_{X}^{}{divf(x) d \lambda^{n}}[/mm] =
> [mm]\integral_{\partialX}^{}{ \sigma (dz)}[/mm]
Sollst du dieses Integral mit dem Integralsatz von Gauß ausrechnen, oder ist es egal, wie du es machst? Du versuchst hier doch, beide Seiten des Integralsatzes auszurechnen.
> Einsetzen:
>
> [mm]\Rightarrow \integral_{X}^{}{\bruch{-x_1^2+x_2^2+.....+x_n^2}{(x_1^2+x_2^2+\ldots+x_n^2)^{2}}+\bruch{x_1^2-x_2^2+ \ldots +x_n^2}{(x_1^2+x_2^2+ \ldots +x_n^2)^{2}}+ \ldots + \bruch{x_1^2+x_2^2+.....-x_n^2}{(x_1^2+x_2^2+.....+x_n^2)^{2}} d \lambda^{n}}[/mm]
Das kannst du vereinfachen, denn im Zähler kommt jedes der [mm] $x_i^2$ [/mm] einmal mit negativem Vorzeichen und $(N-1)$mal mit positivem Vorzeichen vor, also insgesamt
[mm] \Rightarrow \integral_{X}^{}{\bruch{N-2}{x_1^2+x_2^2+\ldots+x_n^2}d \lambda^{n}} [/mm]
> =
> [mm]\integral_{\partial X}^{}{<\bruch{1}{(z_1^2+z_2^2+.....+z_n^2)}*\vektor{z_1 \\ z_2\\...\\z_n} , \vektor{z_1 \\ z_2\\...\\z_n}> \sigma (dz)}[/mm]
> mit [mm]\nu(z)[/mm] = z
Sollte [mm] $\nu(z)$ [/mm] nicht ein Einheitsvektor sein? Dann muss es [mm] $\bruch{z}{\|z\|}$ [/mm] heißen.
> [mm]\Rightarrow \integral_{X}^{}{\bruch{-x_1^2+x_2^2+.....+x_n^2}{(x_1^2+x_2^2+\ldots+x_n^2)^{2}}+\bruch{x_1^2-x_2^2+ \ldots +x_n^2}{(x_1^2+x_2^2+ \ldots +x_n^2)^{2}}+ \ldots + \bruch{x_1^2+x_2^2+.....-x_n^2}{(x_1^2+x_2^2+.....+x_n^2)^{2}} d \lamda^{n}}[/mm]
> =
> [mm]\integral_{\partial X}^{}{\bruch{1}{(z_1^2+z_2^2+.....+z_n^2)}*\vektor{z_1 \\ z_2\\...\\z_n}^{2} \sigma (dz)}[/mm]
Aber [mm] $\vektor{z_1 \\ z_2\\...\\z_n}^{2}==\|z\|^2$ [/mm] kannst du doch direkt ausrechnen. Und bedenke, dass auf der Oberfläche der Einheitskugel [mm] $\|z\|=1$ [/mm] gilt!
Viele Grüße
Rainer
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:12 Di 16.12.2008 | Autor: | Joan2 |
Danke :) Deine Tipps hätten mir voll geholfen, aber meine Abgabefrist ist abgelaufen :( Schade, aber trotzdem danke ^^
Gruß
Joan
|
|
|
|