www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integralsatz von Gauß
Integralsatz von Gauß < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralsatz von Gauß: Fehlersuche
Status: (Frage) beantwortet Status 
Datum: 20:04 So 20.10.2013
Autor: medphys

Aufgabe
Sei [mm] H={(x,y)|x^2+y^2\le 4, 0\le y} [/mm] und [mm] \vec{v} [/mm] das Vektorfeld [mm] \vec{v}=\vektor{2xy \\ x^2+y^2}. [/mm] Berechnen Sie [mm] \int_{H}^{} [/mm] div [mm] \vec{v}d(x,y) [/mm] sowohl direkt wie auch mit einem geeigneten Integralsatz.

Hallo zusammen,
ich finde bei der Rechnung einfach meinen Fehler nicht.
Zunächst erstmal die direkte Berechnung:
[mm] H'={(r,\varphi|0
[mm] x=r*cos(\varphi) [/mm] ; [mm] y=r*sin(\varphi) [/mm]

[mm] \int_{H}^{} [/mm] div [mm] \vec{v}d(x,y)= \int_{H}^{} [/mm] 4y d(x,y)
[mm] =\int_{H'}^{} 4r^2sin(\varphi)d(r,\varphi) [/mm]

[mm] =\int_{0}^{2}\int_{0}^{\pi}4r^2*sin(\varphi)d\varphi [/mm] dr= [mm] \int_{0}^{2}8r^2dr=\frac{64}{3}. [/mm]

Ich habe dann zur weiteren Berechnung den Integralsatz von Gauß verwendet und leider ein anderes Ergebnis rausbekommen.

[mm] \int_{M}^{} [/mm] div [mm] \vec{v} d(x,y)=\int_{\partialM}^{} \vec{v}\cdot\vec{n}ds [/mm]

[mm] \vec{n}=\frac{1}{2}\vektor{x \\ y} [/mm] die Kurve habe ich dann so parametrisiert [mm] \vec{c(t)}=2\cdot \vektor{cos(t) \\ sin(t)} [/mm] und damit [mm] |\vec{c_t(t)}|=2 [/mm] mit [mm] 0
[mm] \int_{\partial M}^{}[x^2y+\frac{1}{2}y(x^2+y^2)]d(x,y)= 2*\int_{0}^{\pi}[8cos^2(t)*sin(t)+4sin(t)]dt=8*\left[-\frac{2}{3}cos^3(t)-cos(t)\right]_{0}^{\pi}=8*\left[\frac{2}{3}+1-(-\frac{2}{3}-1)\right]=\frac{80}{3} [/mm]

Hoffe ihr könnt meinen Fehler finden.

Gruß
medphys

        
Bezug
Integralsatz von Gauß: Rand vervollständigen !
Status: (Antwort) fertig Status 
Datum: 20:26 So 20.10.2013
Autor: Al-Chwarizmi


> Sei [mm]H={(x,y)|x^2+y^2\le 4, 0\le y}[/mm] und [mm]\vec{v}[/mm] das
> Vektorfeld [mm]\vec{v}=\vektor{2xy \\ x^2+y^2}.[/mm] Berechnen Sie
> [mm]\int_{H}^{}[/mm] div [mm]\vec{v}d(x,y)[/mm] sowohl direkt wie auch mit
> einem geeigneten Integralsatz.
>  Hallo zusammen,
>  ich finde bei der Rechnung einfach meinen Fehler nicht.
>  Zunächst erstmal die direkte Berechnung:
>  [mm]H'={(r,\varphi|0
>  
> [mm]x=r*cos(\varphi)[/mm] ; [mm]y=r*sin(\varphi)[/mm]
>  
> [mm]\int_{H}^{}[/mm] div [mm]\vec{v}d(x,y)= \int_{H}^{}[/mm] 4y d(x,y)
>  [mm]=\int_{H'}^{} 4r^2sin(\varphi)d(r,\varphi)[/mm]
>  
> [mm]=\int_{0}^{2}\int_{0}^{\pi}4r^2*sin(\varphi)d\varphi[/mm] dr=
> [mm]\int_{0}^{2}8r^2dr=\frac{64}{3}.[/mm]
>  
> Ich habe dann zur weiteren Berechnung den Integralsatz von
> Gauß verwendet und leider ein anderes Ergebnis
> rausbekommen.
>  
> [mm]\int_{M}^{}[/mm] div [mm]\vec{v} d(x,y)=\int_{\partialM}^{} \vec{v}\cdot\vec{n}ds[/mm]
>  
> [mm]\vec{n}=\frac{1}{2}\vektor{x \\ y}[/mm] die Kurve habe ich dann
> so parametrisiert [mm]\vec{c(t)}=2\cdot \vektor{cos(t) \\ sin(t)}[/mm]
> und damit [mm]|\vec{c_t(t)}|=2[/mm] mit [mm]0
>
> [mm]\int_{\partial M}^{}[x^2y+\frac{1}{2}y(x^2+y^2)]d(x,y)= 2*\int_{0}^{\pi}[8cos^2(t)*sin(t)+4sin(t)]dt=8*\left[-\frac{2}{3}cos^3(t)-cos(t)\right]_{0}^{\pi}=8*\left[\frac{2}{3}+1-(-\frac{2}{3}-1)\right]=\frac{80}{3}[/mm]
>  
> Hoffe ihr könnt meinen Fehler finden.
>  
> Gruß
>  medphys


Hallo medphys,

(steht dies für "Medizin + Physik" ?  - interessante Kombination !)

ich habe jetzt gar nicht groß zu rechnen angefangen.
Aber ich sehe, dass du offenbar nur einen Teil der
Randkurve von H (den Halbkreisbogen) berücksichtigt
hast, aber nicht den Rest (den auf der x-Achse liegenden
Kreisurchmesser) !

Habe jetzt diesen Teil doch gerade noch berechnet,
und der daraus resultierende Beitrag scheint exakt
die Lücke zwischen deinen Ergebnissen zu füllen !

LG ,   Al-Chwarizmi


Bezug
                
Bezug
Integralsatz von Gauß: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:48 So 20.10.2013
Autor: medphys

Danke für die schnelle Antwort!
Genau dafür soll das medphys stehen.
Habe mal probiert die Strecke von -2 bis 2 zu parametrisieren, dabei kam raus:
[mm] \vec{c_2(t)}=\vektor{-2 \\ 0}+t \vektor{4 \\ 0} [/mm] mit 0<t<1.
Wenn ich das einsetze kommt dabei 0 raus, weil in jedem Produkt ein Faktor y auftaucht, der durch diese Parametrisierung immer 0 ist. Wo liegt diesmal der Fehler?
Gruß

Bezug
                        
Bezug
Integralsatz von Gauß: Antwort
Status: (Antwort) fertig Status 
Datum: 22:11 So 20.10.2013
Autor: Al-Chwarizmi


> Danke für die schnelle Antwort!
>  Genau dafür soll das medphys stehen.
>  Habe mal probiert die Strecke von -2 bis 2 zu
> parametrisieren, dabei kam raus:
>  [mm]\vec{c_2(t)}=\vektor{-2 \\ 0}+t \vektor{4 \\ 0}[/mm] mit
> 0<t<1.
>  Wenn ich das einsetze kommt dabei 0 raus, weil in jedem
> Produkt ein Faktor y auftaucht, der durch diese
> Parametrisierung immer 0 ist. Wo liegt diesmal der Fehler?
>  Gruß



Hallo medphys,

ich habe mir das entsprechende Integral so notiert:

    [mm] $\integral_{x=-2}^{+2}\,\vec{v}*\vec{n}\ [/mm] dx\ =\ [mm] \integral_{x=-2}^{+2}\,\pmat{2*x*y\\x^2+y^2}*\pmat{0\\-1}\ [/mm] dx$

      mit y=0 :

    $\ =\ [mm] \integral_{x=-2}^{+2}\,\pmat{0\\x^2}*\pmat{0\\-1}\ [/mm] dx\ =\ [mm] \integral_{x=-2}^{+2}\,(-\,x^2)\ [/mm] dx$

LG ,   Al-Chw.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de