www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integration
Integration < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:19 Mo 12.12.2005
Autor: piler

Hi,

wie integriere ich [mm] \bruch{1}{1 + x} [/mm]

das ist ja eigentlich  [mm] (1+x)^{-1} [/mm]

Aber wie finde ich da die Stammfunktion ?

Nach den üblichen Regeln hätte ich ja als Stammfunktion irgendwas hoch 0, aber das geht nicht.
Und es ist auch keine (mir bekannte) trigonometrische Funktion...


        
Bezug
Integration: natürlicher Logarithmus
Status: (Antwort) fertig Status 
Datum: 16:24 Mo 12.12.2005
Autor: Roadrunner

Hallo piler!


Es gilt:  [mm] $integral{\bruch{1}{x} \ dx} [/mm] \ = \ [mm] \ln(x) [/mm] \ + \ C$


Gruß vom
Roadrunner


Bezug
                
Bezug
Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:16 Mo 12.12.2005
Autor: piler

ist die STammfunktion dann auch ln x ?

ist also die Stammfunktion von  [mm] \bruch{1}{c + x} [/mm] also ln x ?

Bezug
                        
Bezug
Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 17:42 Mo 12.12.2005
Autor: Karl_Pech

Hallo piler,


> ist die STammfunktion dann auch ln x ?
>  
> ist also die Stammfunktion von  [mm]\bruch{1}{c + x}[/mm] also ln x
> ?


Das kannst Du leicht nachprüfen, indem Du [mm] $\ln [/mm] x$ ableitest! Die Integrationskonstante $C$ fällt dann weg, und Du erhälst [mm] $\frac{1}{x}$. [/mm] Nur für c = 0 gilt also das, was Du oben geschrieben hast.
Eine mögliche Lösung für dein Problem besteht darin sich den Prozess des Ableitens nochmal klarzumachen! Du wendest beim Ableiten von [mm] $\ln [/mm] x$ die MBKettenregel an. Es gilt [mm] $\frac{\partial}{\partial x}x [/mm] = 1$ und wegen der Linearität der Ableitung auch [mm] $\frac{\partial}{\partial x}\left[x+c\right] [/mm] = 1$.


Damit erhalten wir nach der Kettenregel:


[mm] $\frac{\partial}{\partial x}\ln\left(x+c\right) [/mm] = [mm] \frac{1}{x+c}$ [/mm]



Viele Grüße
Karl




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de