www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integration
Integration < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 11:51 Di 31.01.2006
Autor: angie.b

Aufgabe
Bestimme folgende Integrale!

a) [mm] \integral_{a}^{b}{\bruch{dx}{5x-4}} [/mm]

b) [mm] \integral_{a}^{b}{\bruch{dx}{(ax+b)^{3}}} [/mm]

c) [mm] \integral_{a}^{b}{x*sinx^{2} dx} [/mm]

meine frage dazu ist nun, ob ich die integrale mit hilfe von substituion berechnen muss?ich habe schon versucht die brüche aufzulösen, komme aber auf kein anständiges ergebnis. über jeden lösungsansatz würde ich mich freuen,danke!

        
Bezug
Integration: Substitution
Status: (Antwort) fertig Status 
Datum: 12:02 Di 31.01.2006
Autor: Roadrunner

Hallo angie.b!


Substitution ist genau das richtige Stichwort! [ok]


a) [mm]\integral_{a}^{b}{\bruch{dx}{5x-4}}[/mm]

Substituiere: $z \ := \ 5x-4$


b) [mm]\integral_{a}^{b}{\bruch{dx}{(ax+b)^{3}}}[/mm]

Schreibe um:  [mm] $\bruch{1}{(a*x+b)^3} [/mm] \ = \ [mm] (a*x+b)^{-3}$ [/mm] und

substituiere: $z \ := \ ax+b$


c) [mm]\integral_{a}^{b}{x*\sin\left(x^2\right) \ dx}[/mm]

Substituiere: $z \ := \ [mm] x^2$ [/mm]



[aufgemerkt]  Jeweils aber nicht vergessen, $dx_$ durch $dz_$ zu ersetzen!




Gruß vom
Roadrunner


Bezug
                
Bezug
Integration: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 12:27 Di 31.01.2006
Autor: angie.b

erstaml ein gaaanz großes danke für deine schnelle hilfe.
jetzt will ich mich nur vergewissern,ob meine lösungen richtig sind (für unbestimmte Integrale):

a) 5*ln|5x-4| + c

b) - [mm] \bruch{a}{2*(ax+b)^{2}} [/mm] + c

c) - [mm] \bruch{2}{3} x^{6}*cosx^{2} [/mm]

bei der aufgabe c, bin ich allerdings nicht wirklich mit klar gekommen,aber ich habs probiert..:)

Bezug
                        
Bezug
Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 12:38 Di 31.01.2006
Autor: Disap

Hi hallöchen.

> erstaml ein gaaanz großes danke für deine schnelle hilfe.
>  jetzt will ich mich nur vergewissern,ob meine lösungen
> richtig sind (für unbestimmte Integrale):
>  
> a) 5*ln|5x-4| + c

Das ist so nicht ganz richtig. Korrekt müsste es lauten

F(x) =  [mm] \bruch{ln|5x-4|}{5}+c [/mm]

Die fünf steht also im Nenner. Vertmutlich ein Tippfehler?

> b) - [mm]\bruch{a}{2*(ax+b)^{2}}[/mm] + c

[notok] Wie kommst du auf das a im Zähler?

Richtig müsste es lauten
[mm] \bruch{-1}{2a*(ax+b)^{2}}[/mm] [/mm] + c

> c) - [mm]\bruch{2}{3} x^{6}*cosx^{2}[/mm]
>  
> bei der aufgabe c, bin ich allerdings nicht wirklich mit
> klar gekommen,aber ich habs probiert..:)

Zu kompliziert das Ergebnis! Irgendetwas mit 6 im Exponenten.

Wenn du es mit Substitution lösen möchtest, dann benutze die Substitution [mm] z:=x^2 [/mm] => z' = 2x

Ansonsten kannst du $ [mm] \integral_{a}^{b}{x\cdot{}sinx^{2} dx} [/mm] $ auch mit partieller Integration lösen. (ich gehe mal davon aus, dass du [mm] sin(x^2) [/mm] meintest und nicht [mm] (sin(x))^2 [/mm] = sin(x) * sin(x) )? (Siehe Mitteilung)  Zeig uns doch mal deine Rechnung oder versuchs noch einmal. Kontrollergebnis für diese Aufgabe mit [mm] sin(x^2) [/mm]

F(x) =  [mm] \bruch{-cos(x^2)}{2} [/mm]

Schöne Grüße Disap

Bezug
                                
Bezug
Integration: Einspruch!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:44 Di 31.01.2006
Autor: Roadrunner

Hallo Disap!


> Ansonsten kannst du [mm]\integral_{a}^{b}{x\cdot{}sinx^{2} dx}[/mm] auch mit partieller Integration lösen.

Das halte ich für ein Gerücht, da Du [mm] $\sin\left(x^2\right)$ [/mm] nicht elementar integrieren kannst.


Gruß vom
Roadrunner


Bezug
                                        
Bezug
Integration: geschlafen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:57 Di 31.01.2006
Autor: Disap

Hallo Roadrunner.

> > Ansonsten kannst du [mm]\integral_{a}^{b}{x\cdot{}sinx^{2} dx}[/mm]
> auch mit partieller Integration lösen.
>  
> Das halte ich für ein Gerücht, da Du [mm]\sin\left(x^2\right)[/mm]
> nicht elementar integrieren kannst.

Du hast natürlich Recht. Was ich mir bei dem Gedanken gedacht habe, weiß ich auch nicht - vermutlich war ich auf [mm] \int x*(sinx)^2 [/mm] fixiert.

Danke für den Hinweis!

Grüße,
Disap

Bezug
                                
Bezug
Integration: Aufgabe a)
Status: (Frage) beantwortet Status 
Datum: 12:54 Di 31.01.2006
Autor: angie.b

also ich hab meinen lösungsweg nochmal angeschaut,weiß aber nicht,weshlab die 5 im nenner stehen muss?

wenn ich mit z= 5x -4 substituiere erhalte ich

[mm] \integral_{a}^{b}{\bruch{1}{z} * 5 dz} [/mm]

und wenn ich das dann integriere,komme ich auf

5ln|z| + c



Bezug
                                        
Bezug
Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 13:00 Di 31.01.2006
Autor: Disap

Hallo noch einmal.

> also ich hab meinen lösungsweg nochmal angeschaut,weiß aber
> nicht,weshlab die 5 im nenner stehen muss?
>  
> wenn ich mit z= 5x -4 substituiere erhalte ich

[ok]

leiten wir das mal ab, es ergibt sich

z'=5  

z' =  [mm] \bruch{dz}{dx} \gdw [/mm] dx =  [mm] \bruch{dz}{z'} [/mm] = [mm] \bruch{dz}{5} [/mm]

Es muss also im Nenner stehen, da du für das "eigentliche" dx eben diesen Bruch einsetzt.

> [mm]\integral_{a}^{b}{\bruch{1}{z} * 5 dz}[/mm]
>  
> und wenn ich das dann integriere,komme ich auf
>  
> 5ln|z| + c

Ok?

VG Disap

Bezug
                                                
Bezug
Integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:04 Di 31.01.2006
Autor: angie.b

stimmt,ich hab in meiner rechnung beim ersetzen von dx durch dz nen schreibfehler gehabt...:)...aber jetzt hab ichs kappiert..

mfg angie ;)

Bezug
                                
Bezug
Integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:10 Di 31.01.2006
Autor: angie.b

vielen,vielen dank euch beiden!!
auch aufgabe c) habe ich soeben rausbekommen..:)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de