www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integration
Integration < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration: partialbruchzerlegung
Status: (Frage) beantwortet Status 
Datum: 21:49 Fr 23.05.2008
Autor: Kreide

Aufgabe
[mm] \bruch{1}{x^4-x^2} [/mm]

Hallo, ich habe eine Frage zum Aufstellen der Partialbruchzerlegung:

[mm] \bruch{1}{x^4-x^2}=\bruch{A}{x}+\bruch{B}{x^2}+\bruch{C}{x-1}+\bruch{D}{x+1} [/mm]

wie kommt man dadrauf?
Es gilt doch [mm] x^4-x^2=x^2(x-1)(x+1) [/mm] und nicht [mm] x^4-x^2=x*x^2(x-1)(x+1) [/mm]

Lg
kreide

        
Bezug
Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 22:06 Fr 23.05.2008
Autor: leduart

Hallo
sobalsd eine Nullstelle doppelt ist, gilt für sie der Ansatz [mm] \bruch{Ax+B}{(x-x_0)^2} [/mm]  hier ist [mm] x_0=0 [/mm] Dann ist das dasselbe wie [mm] A/x+B/x^2. [/mm]
Aber du kannst das andere versuchen, und merkst einfach, dass du scheiterst!
Gruss leduart

Bezug
                
Bezug
Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:36 Fr 23.05.2008
Autor: Kreide

hallo leduart,

danke für die erklärung,

ich hab aber noch eine kleine Frage:

Betrachte folgenden bruch
[mm] \bruch{2}{x(x^2+1)}= \bruch{A}{x}+\bruch{B}{x^2+1} [/mm]

Hier habe ich ja nur eine Nullstelle x=0, also wäre A=0, aber wie rechne ich B aus? Ich habe in [mm] 2=A(x^2+1)+Bx [/mm] für A=2 eingesetzt, dann bekomme ich aber B in abhängigkeit von x raus...?!?

[mm] B=\bruch{-(x^2+1)}{x}, [/mm] muss ich dann die Nullstelle x=0 einsetzen? ich darf ja aber nicht durch 0 teilen :S

Lg kreide

Bezug
                        
Bezug
Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 23:05 Fr 23.05.2008
Autor: Kroni


> hallo leduart,
>  
> danke für die erklärung,
>  
> ich hab aber noch eine kleine Frage:
>  
> Betrachte folgenden bruch
>  [mm]\bruch{2}{x(x^2+1)}= \bruch{A}{x}+\bruch{B}{x^2+1}[/mm]
>  
> Hier habe ich ja nur eine Nullstelle x=0, also wäre A=0,
> aber wie rechne ich B aus? Ich habe in [mm]2=A(x^2+1)+Bx[/mm] für
> A=2 eingesetzt, dann bekomme ich aber B in abhängigkeit von
> x raus...?!?
>  
> [mm]B=\bruch{-(x^2+1)}{x},[/mm] muss ich dann die Nullstelle x=0
> einsetzen? ich darf ja aber nicht durch 0 teilen :S

Hi,

schreib dir das nochmal so um: Der Zähler ergibt doch dann:

[mm] $Ax^2+Bx+A$ [/mm] und das soll gleich 2 sein für alle x! Das ist aber unmöglich, denn dann müsste A=0 und A=2 gleichzeitig sein, und das ist unmöglich.

Du musst also eine andere PZB wählen.

EDIT: Deine PZB scheitert, weil du keine relle Nullstelle für [mm] x^2+1 [/mm] findest. In Diesem Fall setze einfach mal folgendes an:

[mm] $\frac{A}{x}+\frac{Bx+C}{x^2+1}$ [/mm]

D.h. du hast dann im Zähler des [mm] x^2+1 [/mm] eine ganzrat. Funktion, die vom Grad her 1 kleiner ist, als die im Nenner. Dann solltest du zu einem Ergebnis kommen.

LG

Kroni

LG

Kroni

>  
> Lg kreide


Bezug
                                
Bezug
Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:16 Sa 24.05.2008
Autor: Kreide

hi,

> EDIT: Deine PZB scheitert, weil du keine relle Nullstelle
> für [mm]x^2+1[/mm] findest.

ja, ansonsten wäre B=i

In Diesem Fall setze einfach mal

> folgendes an:
>  
> [mm]\frac{A}{x}+\frac{Bx+C}{x^2+1}[/mm]
>  
> D.h. du hast dann im Zähler des [mm]x^2+1[/mm] eine ganzrat.
> Funktion, die vom Grad her 1 kleiner ist, als die im
> Nenner. Dann solltest du zu einem Ergebnis kommen.
>  

ich hab das ausprobiert, es macht die sache aber nicht einfacher
A=2

[mm] 2=2(x^2+1)+(Bx+C) [/mm]

[mm] 0=x^2(2+B)+Cx [/mm]

hier bekomme ich für B und C wieder keine "normalen -zahlen" raus....

Lg kreide

PS: KAnn man [mm] \bruch{2}{x^3+x} [/mm] vielleicht auch anders integrieren als mit PBZ? IRgendwie scheint es ja mit PBZ nicht zu klappen

Bezug
                                        
Bezug
Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 09:36 Sa 24.05.2008
Autor: Al-Chwarizmi

  > In Diesem Fall setze einfach mal
> > folgendes an:
>  >  
> > [mm]\frac{A}{x}+\frac{Bx+C}{x^2+1}[/mm]
>  >  
> > D.h. du hast dann im Zähler des [mm]x^2+1[/mm] eine ganzrat.
> > Funktion, die vom Grad her 1 kleiner ist, als die im
> > Nenner. Dann solltest du zu einem Ergebnis kommen.
>  >  
>
> ich hab das ausprobiert, es macht die sache aber nicht
> einfacher
>  A=2          [ok]
>  
> [mm]2=2(x^2+1)+(Bx+C)[/mm]       [notok]

Es muss heissen:     [mm]2=2*(x^2+1)+(Bx+C)*x[/mm]

Daraus folgt sofort  B = -2  und  C = 0  !

> PS: KAnn man [mm]\bruch{2}{x^3+x}[/mm] vielleicht auch anders
> integrieren als mit PBZ?

Da sehe ich keine andere Möglichkeit.

> Irgendwie scheint es ja mit PBZ
> nicht zu klappen

.... es wird nun wohl gleich klappen !


LG   al-Chwarizmi


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de