www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Integration
Integration < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:57 Sa 26.02.2005
Autor: Ares1982

Hi@ all,
ich noch eine Frage zu einer Aufgabe von ner Probeklausur ( schreibe nämlich in zweieinhalb Wochen). Ich habe eigentlich keine Probleme hier, aber ich finde es gibt hier zuwenig informationen. Ich stell sie euch mal vor:

Berchne den Flächeninhalt der Fläche  

                                            z=xy
            
                                                                            für x²+y² [mm] \le [/mm] 1.

Also, das ist für mich zu wenig. Ich habe es zuerst mit Zylinderkoordinaten parametriesiertr, aber das ist zu allgemein denke ich. Kann mir hier einer Helfen? Ich danke schonmal im vorraus. Bis denn!!!
                      
                                                  Hüseyin

        
Bezug
Integration: Bereichsangabe
Status: (Antwort) fertig Status 
Datum: 17:57 Sa 26.02.2005
Autor: MathePower

Hallo,

es ist ja nicht gesagt, ob da über alle x,y die diese Gleichung erfüllen integriert werden soll, oder nur für [mm]x,\;y\; \geqslant \;0[/mm].

Gruß
MathePower



Bezug
        
Bezug
Integration: meine meinung
Status: (Antwort) fertig Status 
Datum: 18:35 Sa 26.02.2005
Autor: andreas

hi

wenn ich diese aufgabe ohne irgendwelche weiteren informationen erhalten würde, würde ich einfach über den gesamten angegeben bereich integrieren, also über [m]A = \{(x, y) \in \mathbb{R}^2: x^2 + y^2 \leq 1 \} [/m] und das ist ja gerade die einheitskreisscheibe. wenn du das formal ausrechnen willst bieten sich hier polarkoordinaten an:

[m] \begin{array}{c} x = r \cos \varphi \\ y = r \sin \varphi \end{array} [/m],

wobei $r [mm] \in [/mm] [0, 1]$ und [mm] $\varphi \in [/mm] [0, 2 [mm] \pi]$. [/mm] dann sollte dabei $0$ herauskommen, was man auch mit einer gewissen symmetrie-überlegeung sehen kann.

ich finde also, dass da im prinzip keine information fehlt.


grüße
andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de