www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Integration
Integration < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:26 Sa 15.05.2004
Autor: Magician

Hallo, ich habe ein kleines Problem. Bei einer Physik aufgabe soll ich den Fluss durch eine Fläche berechnen. Der Fluss hat eine best. Funktion f(x) welche hier nicht weiter interessiert, es ist nur wichtig zu wissen dass der Fluss vom Abstand x zu dem Punkt an dem man ihn berechnen will abhängig ist.  Nun dieser Fluss geht durch eine quadratische Fläche im 3D-Raum. In der einen Ecke ist der Abstand dann x in der oberen Ecke ist er wurzel(x²+a²), wobei a die Seitenlänge der quadratischen Fläche ist. Nun in der seitlichen Ecke ist der Abstand ebenfalls wurzel(x²+a²) in der oberen seitlichen Ecke ist der Abstand nun folglich wurzel(x²+2a²). Wie integriere ich nun das ganze, so dass ich den Fluss durch die gesamte Fläche habe? Magician

        
Bezug
Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 19:02 Sa 15.05.2004
Autor: Paulus

Hallo Magician

ich fürchte, dass, wenn deine Beschreibung wirklich stimmt, das Ganze trivial wird. (Ich glaube deshalb, dass du das Vektorfeld vielleicht doch noch etwas genauer beschreiben solltest).

Warum?
Du spannst offenbar dein Quadrat parallel zur y-z-Ebene auf, sagen wir bei [mm]x=x_0[/mm]. In diesem Falle interessiert doch nur die x-Komponente des Vektorfeldes, und die ist, weil das Vektorfeld gemäss deinen Angaben nur von x abhängt, im ganzen Quadrat konstant.
(Zum Beispiel [mm]f(x_0)[/mm])

Und dann ist doch der Fluss durch das Quadrat mit der Seite [mm]a[/mm] einfach [mm]f(x_0)*a^2[/mm]

Und dafür brauchte ich ja gar nicht zu integrieren! :-)

mit lieben Grüssen

Bezug
                
Bezug
Integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:23 So 16.05.2004
Autor: Magician

Ich glaube ich habe mich etwas falsch ausgedrückt. Das Vektorfeld hängt nicht nur von x ab sondern bei genauerer Überlegung auch von y und z. Das quadrat liegt in der y z Ebene. Das Vektorfeld entspringt einem Punkt auf der x-Achse und läuft radial in alle Richtungen von diesem Punkt weg. Ich habe fälschlicher Weise x mit der x-Achse in Zusammenhang gebracht, x war hier der Abstand von diesem Punkt zu einem Punkt auf dem Quadrat (sorry). Die Funktion beinhaltet also nicht x als x-Achsenkoordinate sondern x als Abstand von diesem Punkt. Wir können auch sagen dass wir hierfür t nehmen und somit eine Funktion f(t) haben. Die Funktion sieht eigentlich so aus, lauter konstanten sagen wir k und der Abstand t im nenner also f(t)=k/t. Nun hängt t ja von x y und z ab. Wie integriere ich nun das ganze?. MfG Magician.

PS: Entschuldigung aber ich war glaube beim Posten der Frage irgednwie noch nicht richtig wach.
  

Bezug
                        
Bezug
Integration: Antwort
Status: (Antwort) fertig Status 
Datum: 23:35 So 16.05.2004
Autor: Paulus

Hallo magician

wenn ich dich richtig verstehe, handelt es sich also um ein radiales Vektorfeld, deren 'Stärke' den Betrag $k/r$ hat.

Im rechtwinkligen Koordinatensystem sieht es dann so aus(mit dem Ursprung des Vektorfeldes im Koordinatenursprung):

[mm] $(\bruch{k}{\wurzel{x^2+y^2+z^2}},\bruch{k}{\wurzel{x^2+y^2+z^2}},\bruch{k}{\wurzel{x^2+y^2+z^2}})$ [/mm]
Jetzt kannst du wieder die Anordnung nehmen, wie ich sie oben beschrieben habe, das Vektorfeld sieht dann so aus:

[mm] $(\bruch{k}{\wurzel{x_0^2+y^2+z^2}},\bruch{k}{\wurzel{x_0^2+y^2+z^2}},\bruch{k}{\wurzel{x_0^2+y^2+z^2}})$ [/mm]

Für den Fluss durch eine Fläche interessiert jeweils nur der Betrag des Vektorfeldes senkrecht auf das Flächenelement, und das ist in unserem Beispiel nur die x-Komponente. Somit ergibt sich für dein Problem, das folgende Integral zu berechnen:

[mm] $\int_{0}^{a}\!\!\!\int_{0}^{a}\bruch{1}{\wurzel{x_0^2+y^2+z^2}}\, [/mm] dy dz$

Dabei ist [mm] $x_0$ [/mm] natürlich als konstant aufzufassen.

Ich weiss, diese Antwort ist etwas kurz ausgefallen, aber ich bin übermüdet und muss mal etwas Schlaf nachholen. Solltest du dazu noch weitere Fragen haben, dann melde dich bitte einfach wieder, irgendwann sollte schon jemand in diesem Forunm ausgeschlafen sein! ;-)

Mit lieben Grüssen



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de