www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integration / Fläche
Integration / Fläche < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration / Fläche: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:59 Di 20.09.2011
Autor: Haiza

Aufgabe
Gegeben sei die Funktion $ z=f(x,y)=y [mm] \cdot x^3+2x [/mm] $.
a) Berechnen Sie das Doppelintegral $ [mm] \integral_{x=0}^{2}\integral_{y=0}^{2}{f(x,y) dy dx} [/mm] $
b) Das Doppelintegral aus Teil a) kann man auch als Integral über eine Fläche A schreiben: $ [mm] \integral_{A}^{}\integral_{}^{}{f(x,y) dA} [/mm] $ Skizzieren Sie die Fläche A in der x-y-Ebene.

Hallo,
a) habe ich berechnet, jedoch weiß ich nicht genau welche Fläche ich zeichnen soll und woher ich weiß, wie diese Aussieht.

Habt ihr Tipps und Hilfen?

Danke im Voraus!

Gruß

        
Bezug
Integration / Fläche: Antwort
Status: (Antwort) fertig Status 
Datum: 10:23 Di 20.09.2011
Autor: Al-Chwarizmi


> Gegeben sei die Funktion [mm]z=f(x,y)=y \cdot x^3+2x [/mm].
>  a)
> Berechnen Sie das Doppelintegral
> [mm]\integral_{x=0}^{2}\integral_{y=0}^{2}{f(x,y) dy dx}[/mm]
>  b)
> Das Doppelintegral aus Teil a) kann man auch als Integral
> über eine Fläche A schreiben:
> [mm]\integral_{A}^{}\integral_{}^{}{f(x,y) dA}[/mm] Skizzieren Sie
> die Fläche A in der x-y-Ebene.
>  Hallo,
>  a) habe ich berechnet, jedoch weiß ich nicht genau welche
> Fläche ich zeichnen soll und woher ich weiß, wie diese
> Aussieht.


Hallo Haiza,

in diesem Fall ist das ganz einfach. Die Integrations-
grenzen zeigen, dass sowohl x als auch y von 0 bis 2
laufen sollen. In der x-y-Ebene betrachtet ist also das
Integrationsgebiet A das entsprechende Quadrat.
Das Differential dA des Flächeninhalts kann man sich
als den (infinitesimalen) Inhalt eines Rechtecks auf-
fassen, dessen Seiten parallel zu den Achsen sind
und die (ebenfalls infinitesimalen) Seitenlängen dx
und dy haben. Es ist   $\ dA\ =\ dx*dy$

LG   Al-Chw.

Bezug
                
Bezug
Integration / Fläche: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:44 Di 20.09.2011
Autor: Haiza

Also ist ein Rechteck zu zeichen was diese vier Eckpunkte besitzt:
[mm] $P_1=[0;0] [/mm] $
[mm] $P_2=[2;0] [/mm] $
[mm] $P_3=[2;2] [/mm] $
[mm] $P_4=[0;2] [/mm] $
?

Gruß

Bezug
                        
Bezug
Integration / Fläche: Antwort
Status: (Antwort) fertig Status 
Datum: 10:46 Di 20.09.2011
Autor: kamaleonti

Hallo haiza,
> Also ist ein Rechteck zu zeichen was diese vier Eckpunkte besitzt:
>  [mm]P_1=[0;0][/mm]
>  [mm]P_2=[2;0][/mm]
>  [mm]P_3=[2;2][/mm]
>  [mm]P_4=[0;2][/mm]
>  ?

Ja, es handelt sich sogar um ein Quadrat.

>  
> Gruß

LG


Bezug
                                
Bezug
Integration / Fläche: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:47 Di 20.09.2011
Autor: Haiza

Danke :-) !

Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de