Integration Funktionenfolge < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:58 Mo 02.05.2016 | Autor: | Stala |
Aufgabe | Für k [mm] \in \IN_0 [/mm] sei [mm] f_k [/mm] : ] 0, [mm] \infty] \to \IR [/mm] durch [mm] f_k(x)= x^a(-ln x)^k [/mm] definiert, wobei a eine positive reelle Konstante ist. Zeigen Sie mithilfe vollständiger Unduktion, dass [mm] \limes_{x\rightarrow 0} f_k(x) [/mm] = 0 und [mm] \integral_{0}^{1}{f_k(x) dx} [/mm] = [mm] \bruch{k!}{(a+1)^{k+1}} [/mm] |
Hallo liebes Forum,
den ersten Teil konnte ich recht mühelos beweisen mittels Induktion, beim Integral komme ich aber nicht weiter:
Induktionsanfang für k=0
[mm] \integral_{0}^{1}{f_0(x) dx} [/mm] = [mm] \integral_{0}^{1}{x^a dx} [/mm] = [mm] \bruch{x^{a+1}}{(a+1)} \vert_0^1 [/mm] = [mm] \bruch{1}{(a+1)} [/mm]
was den Anfang liefert.
Aber wie weiter:
[mm] \integral_{0}^{1}{f_{k+1}(x) dx}=\integral_{0}^{1}{x^a(-ln x)^{k+1} dx}=\integral_{0}^{1}{f_{k}(x) (-ln x) dx}
[/mm]
Ich habe schon probiert so subtituerien mit x = [mm] e^t [/mm] und/oder pratiell zu integrieren. Aber ich komme einfach auf keine Gleichgun in die ich meine Indukstionsannahme [mm] \integral_{0}^{1}{f_k(x) dx} [/mm] = [mm] \bruch{k!}{(a+1)^{k+1}} [/mm] einsetzen kann.
In welche Richtung kann ich noch denken?
Ein kleiner Tipp zum Auf-Die-Sprünge-Helfen wäre gut ;)
VG und vielen Dank
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:34 Mo 02.05.2016 | Autor: | chrisno |
Du hast es eigentlich schon, nur hat Dir die letzte Umformung den Weg zur Lösung verhüllt.
$ [mm] \integral_{0}^{1}{f_{k+1}(x) dx}=\integral_{0}^{1}{x^a(-ln x)^{k+1} dx}$
[/mm]
Partiell integrieren, mit $u'(x) = [mm] x^{a}$ [/mm] und $v(x) = (-ln [mm] x)^{k+1}$
[/mm]
Dann brauchst Du den Grenzwert um den Term [mm] $[fg]_0^1$ [/mm] verschwinden zu lassen und es bleibt, wie gewünscht, [mm] $\br{k+1}{a+1} \integral_{0}^{1}{f_k(x) dx} [/mm] $ übrig.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:23 Di 03.05.2016 | Autor: | Stala |
Wald... Bäume... so einfach ;)
DANKE
|
|
|
|