www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integration Kinematikaufgabe
Integration Kinematikaufgabe < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration Kinematikaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:12 Mo 16.08.2010
Autor: Nico.

Aufgabe
[mm] \integral_{o}^{v}{f(\bruch{v_{1}}{g-kv_{1}^{2}}) dv_{1}} [/mm]

Hallo zusammen,

ich stehe voll auf dem Schlauch. Könnt ihr mir bitte helfen die Aufgabe zu lösen?  

Die  Lösung die mir vorliegt lautet:
= [mm] -\bruch{1}{2k}(In(g-kv^{2})-In [/mm] g)
= [mm] \bruch{1}{2k}In\bruch{g}{g-kv^{2}} [/mm]

Wie kommt man auf diese Lösung.
Könnt ihr mir bitte die einzelnen Rechenschritte aufzeigen?
Vielen Dank!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Integration Kinematikaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 11:28 Mo 16.08.2010
Autor: schachuzipus

Hallo Nicola und erstmal herzlich [willkommenmr],

> [mm]\integral_{o}^{v}{f(\bruch{v_{1}}{g-kv_{1}^{2}}) dv_{1}}[/mm]

Das f ist zuviel ...

>  
> Hallo zusammen,
>  
> ich stehe voll auf dem Schlauch. Könnt ihr mir bitte
> helfen die Aufgabe zu lösen?  
>
> Die  Lösung die mir vorliegt lautet:
>  = [mm]-\bruch{1}{2k}(In(g-kv^{2})-In[/mm] g)
>  = [mm]\bruch{1}{2k}In\bruch{g}{g-kv^{2}}[/mm]
>  
> Wie kommt man auf diese Lösung.
>  Könnt ihr mir bitte die einzelnen Rechenschritte
> aufzeigen?

Ich mache einen Anfang, du den Rest, ok?

Hier hilft eine kleine Umformung und dann eine Substitution weiter:

Es ist [mm] $\frac{v_1}{g-kv_1^2}=\blue{-\frac{1}{2k}}\cdot{}\frac{\blue{-2k}\cdot{}v_1}{g-kv_1^2}$ [/mm]

Also [mm] $\int{\frac{v_1}{g-kv_1^2} \ dv_1}=-\frac{1}{2k}\cdot{}\int{\frac{-2kv_1}{g-kv_1^2} \ dv_1}$ [/mm]

Das ist einfach mit einer geschickt geschriebenen [mm] $\blue{1}$ [/mm] multipliziert.

Jetzt haben wir ein logarithmisches Integral vorliegen, also eines der Bauart [mm] $\int{\frac{f'(x)}{f(x)} \ dx}$, [/mm] dessen Stammfunktion stadtbekannt ist.

Falls du dich daran nicht erinnern kannst, substituiere (im allg. Fall) mal $u=u(x)=f(x)$

Konkret auf dein Integral bezogen substituiere [mm] $u=u(v_1):=g-kv_1^2$ [/mm]

Dann ist [mm] $u'=\frac{du}{dv_1}=\ldots$, [/mm] also [mm] $dv_1=\ldots$ [/mm]

Das alles einsetzen ins Integral und es wird kinderleicht.

Was die Grenzen angeht, so substituiere sie mit oder berechne erst das Integral in $u$ allg. und resubstituiere in [mm] $v_1$, [/mm] dann kannst du die alten Grenzen nehmen.

>  Vielen Dank!
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  

Gruß

schachuzipus

Bezug
                
Bezug
Integration Kinematikaufgabe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:32 Do 19.08.2010
Autor: Nico.

Vielen Dank nun hab ichs hinbekommen.

Einmal über: [mm] \integral_{}^{}{\bruch{f'(x)}{f(x)} dx}= [/mm] In f(x)+C

das ist für meine Aufgabe  dann [mm] -\bruch{1}{2k}[In(g-kv_{1}^2]_{0}^v [/mm]

Mit der Substition:

[mm] -\bruch{1}{2k}*\integral_{0}^{v}{\bruch{-2kv_{1}}{g-kv^2_{1}} dx} [/mm]

mit [mm] u=f(x)-g-kv^2_{1} [/mm]                        

[mm] dx=-\bruch{du}{-2kv_{1}} [/mm]  

[mm] \bruch{du}{dx}=-2kv_{1} [/mm]

[mm] -\bruch{1}{2k}*\integral_{0}^{v}{\bruch{-2kv_{1}}{u}*\bruch{du}{-2kv_{1}}}=-\bruch{1}{2k}*\integral_{0}^{v}{\bruch{1}{u}}*du [/mm]

[mm] =-\bruch{1}{2k}*[In(u)+C]_{0}^2 [/mm] = [mm] -\bruch{1}{2k}*[In(g-kv_{1}^2)]_{0}^2 [/mm]



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de