www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integration des Imaginärteils
Integration des Imaginärteils < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration des Imaginärteils: Hilfe zur einer Aufgabe
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:54 Mo 20.06.2011
Autor: ronaldo12

Aufgabe
y= -f(t) * sin (8*pi*t) mit f(t) t für t >= 0 und 0 für t < 0

Man begründe anschaulich, inwieweit F existiert und zeige es auch durch Rechnung für den Imaginärteil mit variabler oberer Grenze

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

In diesem Aufgabenteil verstehe ich nicht was mit "inwieweit F existiert" gemeint ist und benötige dringend einen Tipp oder einen ANsatz zum lösen dieser Aufgabenstellung

        
Bezug
Integration des Imaginärteils: Antwort
Status: (Antwort) fertig Status 
Datum: 15:22 Mo 20.06.2011
Autor: leduart

Hallo
die Aufgabe ist so unverständlich. Was ist F?  die Stammfunktion von [mm] t*sin(8*\pi*t) [/mm] für t>0 und 0 für t<0
was hat das mit Imaginärteil zu tun?
Gib bitte die ganze Aufgabe bzw. den Zusammenhang an.
Gruss leduart



Bezug
                
Bezug
Integration des Imaginärteils: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:55 Mo 20.06.2011
Autor: ronaldo12

Aufgabe 1
Man Stelle das Integral F(v) := [mm] \integral_{-\infty}^{\infty}{f(t) * e^{-j2*\pi*v*t} dt} [/mm] mit f: [mm] \IR\mapsto\IR [/mm] nach Real und Imaginärteil dar und skizziere den Integranden des Imaginärteils für f(t) = r(t) (t für t>=0 und 0 t<0) (Rampenfunktion) mit z.B. v = 4



Aufgabe 2
Man begründe anschaulich, in wie weit F existiert und zeige es auch durch Rechnung für den Imaginärteil mit variabler oberer Grenze.



Aufgabe 3
Man skizziere qualitativ den Verlauf des Imaginärteils für (ein anderes F, eigtlch mit Tilde~ oben drüber) F(v)= [mm] \integral_{-\infty}^{\infty}{r(t) * e^{-j2*\pi*v*t}*e^{-xt} dt} [/mm] für x=0,5 und v = 4 und zeige mit einem hinreichendem Kriterium die Existenz von Im(F) auf.



So also der erste Aufgabenteil war kein Problem und gab einen schönen Funktionsverlauf. Bei der 2 Aufgabe fehlt mir der ANsatz bzw. die springende Idee und im dritten Teil konnte ich den Funktionsverlauf zwar qualitativ skizzieren aber finde kein hinreichendes Kriterium

Hoffe das dies ausreichend geschildert ist

Bezug
                        
Bezug
Integration des Imaginärteils: Antwort
Status: (Antwort) fertig Status 
Datum: 21:35 Mo 20.06.2011
Autor: leduart

Hallo
die Stelle f(t) = r(t) (t für t>=0 und 0 t<0)versteh ich immer noch nicht.
Wie hast du denn 1 gelöst?
heisst das r(t)=t für t>0 r(t)=0 für t<0?
Ich versteh auch nicht, wie du 1 gelöst hast.
Kannst du das aufschreiben? Du sollst doch nur den Imaginärteil des integranden plotten wenn du r(t) kennst ist das leicht.
Wenn das Integral existiert, nimmst du nen variable obere Grenze und bildest dann den GW bzw zeigst, dass er existiert oder divergiert.
bei 3 musst du eben das hintere Ende des Integranden gut abschätzen um die existenz zu zeigen.
Gruss leduart

Gruss leduart


Bezug
                                
Bezug
Integration des Imaginärteils: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:54 Mo 20.06.2011
Autor: ronaldo12

r(t)=t für t>0 r(t)=0 für t<0 so war es gemeint.
Also die erste ist ja leicht den Imaginärteil des integranden abspalten und schon hat man die Funktion: -t * sin(8*pi*t)

Ich verstehe aber die 2 immer noch nicht

Bezug
                                        
Bezug
Integration des Imaginärteils: Antwort
Status: (Antwort) fertig Status 
Datum: 23:01 Mo 20.06.2011
Autor: leduart

Hallo
Wenn du den Graphen vor dir hast, wie sieht denn die Fläch darunter bis [mm] \infty [/mm] aus? kann dann das integral endlich sein d.h. existieren?
Danach sollst du wirklich rechnen und zeigen, was passiert, wenn du von  a bis 0 integrierst statt [mm] \infty [/mm] und dann a gegen [mm] \infty [/mm] laufen lässt!
Gruss leduart


Bezug
                                
Bezug
Integration des Imaginärteils: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:56 Mo 20.06.2011
Autor: ronaldo12

In dem 2. Aufgabenteil steht, man soll "anschaulich" begründen inwieweit F existiert

Bezug
                        
Bezug
Integration des Imaginärteils: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Mi 22.06.2011
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de