www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integration durch Substitution
Integration durch Substitution < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration durch Substitution: Frage2
Status: (Frage) beantwortet Status 
Datum: 15:02 Sa 26.11.2005
Autor: svenchen

Hallo,

Könnt ihr mir vielleicht bei einer Aufgabe behilflich sein? Mir fehlt hier im Moment noch zu erkennen, wie ich diese Aufgaben am Besen löse:

Gegeben ist die Funktion f(x) = [mm] (lnx)^{3}. [/mm] Geben Sie eine Stammfunktion an.

Ich würde diese Aufgabe gerne über Integration durch Substitution lösen. Dazu habe ich lnx = z substituiert. Außerdem habe ich noch dx =  [mm] \bruch{1}{x} [/mm] du berechnet. Also kann schonmal folgender Zsuammenhang festgehalten werden:

[mm] \integral_{a}^{b} {(lnx)^{3} dx} [/mm] = [mm] (z)^{3} [/mm] * [mm] \bruch{1}{x} [/mm]  = [mm] \bruch{z^{3}}{x} [/mm]

aber wie finde ich jetzt eine Stammfunktion von [mm] \bruch{z^{3}}{x} [/mm] ?

könnt ihr mir helfen'?



        
Bezug
Integration durch Substitution: Hinweis
Status: (Antwort) fertig Status 
Datum: 16:05 Sa 26.11.2005
Autor: MathePower

Hallo svenchen,

> Hallo,
>  
> Könnt ihr mir vielleicht bei einer Aufgabe behilflich sein?
> Mir fehlt hier im Moment noch zu erkennen, wie ich diese
> Aufgaben am Besen löse:
>  
> Gegeben ist die Funktion f(x) = [mm](lnx)^{3}.[/mm] Geben Sie eine
> Stammfunktion an.
>  
> Ich würde diese Aufgabe gerne über Integration durch
> Substitution lösen. Dazu habe ich lnx = z substituiert.
> Außerdem habe ich noch dx =  [mm]\bruch{1}{x}[/mm] du berechnet.
> Also kann schonmal folgender Zsuammenhang festgehalten
> werden:
>  
> [mm]\integral_{a}^{b} {(lnx)^{3} dx}[/mm] = [mm](z)^{3}[/mm] * [mm]\bruch{1}{x}[/mm]  
> = [mm]\bruch{z^{3}}{x}[/mm]
>  
> aber wie finde ich jetzt eine Stammfunktion von
> [mm]\bruch{z^{3}}{x}[/mm] ?
>  
> könnt ihr mir helfen'?
>  

das x musst Du auch ersetzen.

Dann steht da:

[mm]\int {(\ln \;x)^3 \;dx} \; = \;\int {z^3 \;e^z \;d} z[/mm]

Dieses Integral ist dann durch partielle Integration zu lösen.

Gruß
MathePower


  

Bezug
                
Bezug
Integration durch Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:56 Sa 26.11.2005
Autor: svenchen

Hi, danke!
hab die Aufgabe hetzt gelöst, allerdings hab ich knapp eine Seite bei der partiellen Integration. Habe 3 mal partiell integrieren müssen, um endlich das Integral aufzuösen. Wenn du einen Trick kennst, mit dem es in 2-3 Schritten geht wäre es nett, wenn du deine Lösung mal schreiben könntest.

danke

svenchen

Bezug
                        
Bezug
Integration durch Substitution: nicht schneller
Status: (Antwort) fertig Status 
Datum: 20:01 Sa 26.11.2005
Autor: leduart

Hallo svenchen
Esgeht leider nicht schneller! höchstens, man ahnt nach dem 1. Schritt wie's weiter geht, schreibt die fertige Formel hin und beweist sie durch differenzieren!
Gruss leduart

Bezug
                        
Bezug
Integration durch Substitution: Fertige Formel
Status: (Antwort) fertig Status 
Datum: 20:06 Sa 26.11.2005
Autor: MathePower

Hallo svenchen,

> Hi, danke!
>  hab die Aufgabe hetzt gelöst, allerdings hab ich knapp
> eine Seite bei der partiellen Integration. Habe 3 mal
> partiell integrieren müssen, um endlich das Integral
> aufzuösen. Wenn du einen Trick kennst, mit dem es in 2-3
> Schritten geht wäre es nett, wenn du deine Lösung mal
> schreiben könntest.

wie  leduart schon geschrieben hat, geht es nicht schneller.

Darum hier die allgemeine Formel für solche Integrale

[mm]\int {z^n \;e^z \;dz\; = \;\sum\limits_{k = 0}^n {\left( { - 1} \right)^{n - k} \;\left( {n - k} \right)!\;z^k \;e^z } } [/mm]

Gruß
MathePower



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de