www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integration durch Substitution
Integration durch Substitution < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration durch Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:43 Sa 04.11.2006
Autor: TRANSLTR

Aufgabe
a) [mm] (3x-5)^{6} [/mm]
b) [mm] \bruch{5}{3u-4} [/mm]

Wie genau löst man Integralaufgaben mit der Substitution? Ich habe mir schon auf ein paar Seiten das Prinzip angeschaut, verstehe es aber trotzdem nicht ganz.
Bei Aufgabe a bin ich so vorgegangen:
[mm] (3x-5)^{6} [/mm]
->3x-5 substituiert durch y->
[mm] y^{6} [/mm]
->integrieren->
[mm] \bruch{y^{7}}{7} [/mm]
->y wieder zurückersetzen->
[mm] \bruch{(3x-5)^{7}}{7} [/mm]
Die Lösung lautet aber:
[mm] \bruch{1}{21}*(3x-5)^{7} [/mm]

Aufgabe b:
[mm] \bruch{5}{3u-4} [/mm]
->y = 3u-4->
[mm] \bruch{5}{y} [/mm]
->integrieren->
5 * ln(y)
->y wieder einsetzen->
5 * ln|3u-4|
Die Lösung aber lautet:
[mm] \bruch{5}{3}*ln|3u-4| [/mm]

Was mache ich falsch und wie genau sollte man vorgehen?





        
Bezug
Integration durch Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 00:07 So 05.11.2006
Autor: Gonozal_IX

Hi Transl,

du machst eigentlich alles richtig, vergisst nur die Hälfte ;-)

[mm]\integral{(3x-5)^6 dx}[/mm]

[mm]y = 3x-5 [/mm]
[mm]\Rightarrow dy = (3x-5)' dx = 3dx[/mm]
[mm]dx = \bruch{1}{3}dy[/mm]

Jetzt ersetzen:

[mm]\integral{y^6 dx}[/mm]

Aber da du nun nicht mehr nach x integrieren willst, sondern nach y, musst du das dx auch ersetzen und es gilt ja [mm]dx = \bruch{1}{3}dy[/mm]

[mm]\integral{y^6 \bruch{1}{3}dy} = \bruch{1}{3}\integral{y^6 dy}[/mm]

[mm]= \bruch{1}{3}\bruch{y^7}{7}[/mm]

[mm]=\bruch{(3x-5)^7}{21}[/mm]

Die b) schaffst nu alleine, wenn net, einfach nochmal nachfragen :-)

Gruß,
Gono.


Bezug
                
Bezug
Integration durch Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:21 So 05.11.2006
Autor: TRANSLTR

Hey...danke vielmals für die Antwort.....
Aber ich verstehe trotzdem nicht ganz, was du gemacht hast.
Der erste Teil ist mir unklar.
y = 3x-5
Aber was ist gemeint mit
dy=(3x-5)'dx=3dy
[mm] dx=\bruch{1}{3}dy [/mm]

Ich verstehe die Schreibweisen dy und dx nicht.
Hast du jetzt 3x-5 integriert?
Das gäbe dann [mm] \bruch{3x^{2}}{2}-5x [/mm]
Oder has du differenziert?
Das gäbe aber 3.

Sorry..versteh's nicht :S

Bezug
                        
Bezug
Integration durch Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 01:41 So 05.11.2006
Autor: VNV_Tommy

Hall TRANSLTR!

> Hey...danke vielmals für die Antwort.....
>  Aber ich verstehe trotzdem nicht ganz, was du gemacht
> hast.
>  Der erste Teil ist mir unklar.
>  y = 3x-5
>  Aber was ist gemeint mit
>  dy=(3x-5)'dx=3dy
>  [mm]dx=\bruch{1}{3}dy[/mm]
>  
> Ich verstehe die Schreibweisen dy und dx nicht.
>  Hast du jetzt 3x-5 integriert?
>  Das gäbe dann [mm]\bruch{3x^{2}}{2}-5x[/mm]
>  Oder has du differenziert?
>  Das gäbe aber 3.
>  
> Sorry..versteh's nicht :S

Es gilt zu ermitteln:

[mm] \integral{(\red{3x-5})^{6} \blue{dx}} [/mm]

Wir substituieren: [mm]\red{y}=3x-5[/mm]

Bei der Integration mittels Substitution muss man, weil man die zu integrierende Funktion durch das Austauchen verändert, auch das Defferential ändern. Dies macht man, indem man die 'alte' Funktion ableitet, also f'(x) bildet. Da f'(x) nichts anderes ist als der Differentialquotient [mm] \bruch{dy}{dx} [/mm] kann man anstelle der Bezeichnung f'(x) auch [mm] \bruch{dy}{dx} [/mm] schreiben. Heißt deine Funktion y=f(x)=3x-5 dann ergibt sich die erste Ableitung, also f'(x) bzw. [mm] \bruch{dy}{dx} [/mm] , zu [mm] f'(x)=\bruch{dy}{dx}=3. [/mm]

Die Gleichung [mm] \bruch{dy}{dx}=3 [/mm] kannst du nun ganz normal, nach den Regeln der Äquivalenzumformung, nach dx (also nach deiner 'alten' Integrationsvariablen) umstellen. In deinem Fall erhielte man dabei [mm]dx=\blue{\bruch{1}{3}dy}[/mm].

Tauscht du nun in deinem 'alten' Integral die substituierte Funktion mit dem Term y aus, so musst du auch die Integrationsvariable austauschen. Anstelle von dx steht demnach nun im Integral [mm] \bruch{1}{3}dy. [/mm]

Somit sieht das Integral wie folgt aus:

[mm] \integral{\red{y}^{6} \blue{\bruch{1}{3}dy}} [/mm]

An dieser Stelle wird dann ganz einfach nach den bekannten Regeln integriert.

[mm] \integral{\red{y}^{6} \blue{\bruch{1}{3}dy}}=\bruch{1}{3}*\bruch{1}{7}*y^{7}+c [/mm]

Achtung: Am Ende der Integration das zurücktauschen des Integranden (resubstituieren) nicht vergessen, sonst stimmt das Integral nicht.

[mm] \bruch{1}{3}\bruch{1}{7}y^{7}+c=\green{\bruch{1}{21}(3x-5)+c} [/mm]

(c ist die Integrationskonstante, welche bei unbestimmten Integralen IMMER mitzuschreiben ist!)

Hoffe, das war einiger Maßen einleuchtend. :-)

Gruß,
Tommy

Bezug
                                
Bezug
Integration durch Substitution: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:53 So 05.11.2006
Autor: HJKweseleit

Zusatzbemerkung:

Wenn Integrieren so einfach ginge wie zu Anfang versucht, könnte man jede Funktion spielend leicht integrieren:
Den Integranden (auch die wildeste Funktion) einfach y nennen. Nun nach der (falschen) einfachen Regel integrieren: Gibt immer [mm] \bruch{y^{2}}{2}; [/mm] jetzt einfach wieder für y den Term einsetzen.

Klar, dass es so nicht geht - oder?

Bezug
                                        
Bezug
Integration durch Substitution: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:53 So 05.11.2006
Autor: TRANSLTR

Danke Leute!Vielen Dank!
Ich glaub' jetzt kapier' ich's langsam....

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de