www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Integration im IR^{3}
Integration im IR^{3} < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration im IR^{3}: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 11:11 Fr 16.01.2015
Autor: Topologe

Aufgabe
Berechnen Sie folgendes Integral:
[mm] \integral_{M}{z^{4} dS}, M=\{(x,y,z) \in \IR^{3};x^{2}+y^{2}+z^{2}=4\} [/mm]

Lösung:
Wir wählen die Karte
[mm] \psi(\phi,\theta)=\pmat{ 2cos(\phi)cos(\theta) \\ 2sin(\phi)cos(\theta) \\ 2sin(\theta) } [/mm]

[mm] (\phi,\theta) \in (0,2\pi) \times (-\bruch{\pi}{2},\bruch{\pi}{2}). [/mm] Die Gramsche Determinante ist [mm] 4cos(\theta). [/mm] Das Integral wird somit

[mm] \integral_{M}{z^{4} dS} [/mm] = [mm] \integral_{0}^{2\pi}\integral_{-\bruch{\pi}{2}}^{\bruch{\pi}{2}}4cos 2^{4}\theta sin^{4} \theta d\theta d\phi [/mm] = [mm] \bruch{256\pi}{5} [/mm]

Leider verstehe ich diese Lösung überhaupt nicht. Ist jemand in der Lage, mir die Lösung kleinschrittig zu erläutern?
Kann man diese Aufgabe nicht mit normalen Kugelkoordinaten lösen, also

[mm] \integral_{0}^{2\pi}\integral_{0}^{2\pi}\integral_{0}^{2} r^{4}cos^{4}(\rho) r^{2}sin(\rho)dr d\rho d\phi? [/mm]

LG

        
Bezug
Integration im IR^{3}: klar notieren
Status: (Antwort) fertig Status 
Datum: 11:46 Fr 16.01.2015
Autor: Al-Chwarizmi


> Berechnen Sie folgendes Integral:
>  [mm]\integral_{M}{z^{4}\, dS}\ ,\qquad M=\{(x,y,z) \in \IR^{3};x^{2}+y^{2}+z^{2}=4\}[/mm]
>  
> Lösung:
>  Wir wählen die Karte
>  [mm]\psi(\phi,\theta)=\pmat{ 2\,cos(\phi)cos(\theta) \\ 2\,sin(\phi)cos(\theta) \\ 2\,sin(\theta) }[/mm]
>  
> [mm](\phi,\theta) \in (0,2\pi) \times (-\bruch{\pi}{2},\bruch{\pi}{2}).[/mm]
> Die Gramsche Determinante ist [mm]4\,cos(\theta)\,.[/mm]
> Das Integral wird somit
>  
> [mm]\integral_{M}{z^{4} dS}[/mm] =
> [mm]\integral_{0}^{2\pi}\integral_{-\bruch{\pi}{2}}^{\bruch{\pi}{2}}4cos 2^{4}\theta sin^{4} \theta d\theta d\phi[/mm]      [haee]
> = [mm]\bruch{256\pi}{5}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


>  
> Leider verstehe ich diese Lösung überhaupt nicht. Ist
> jemand in der Lage, mir die Lösung kleinschrittig zu
> erläutern?

Die Hauptsache wäre, das Ganze deutlich aufzuschreiben.

    $\integral_{M}{z^{4}\, dS}\ =\ \integral_{\phi=0}^{2\pi}\left(\ \integral_{\theta=-\bruch{\pi}{2}}^{\bruch{\pi}{2}}\underbrace{\left(2\,sin(\theta)\right)^4}_{z^4}\,*\ \underbrace{4\,cos(\theta)}_{Gram} \ d\theta\right) d\phi$

    $\ =\  64\,* \integral_{\phi=0}^{2\pi}\left(\ \integral_{\theta=-\bruch{\pi}{2}}^{\bruch{\pi}{2}}\ sin^4(\theta)}\,*\ cos(\theta) \ d\theta\right) d\phi$

Das innere Integral kann man nun leicht mittels Substitution
lösen. Die äußere Integration besteht dann aus einer
einfachen Multiplikation mit dem Faktor  $2\,\pi$ .


> Kann man diese Aufgabe nicht mit normalen Kugelkoordinaten
> lösen, also
>  
> [mm]\integral_{0}^{2\pi}\integral_{0}^{2\pi}\integral_{0}^{2} r^{4}cos^{4}(\rho) r^{2}sin(\rho)dr d\rho d\phi?[/mm]

Mit dieser Formel würde man über die Vollkugel integrieren.

In der vorliegenden Aufgabe ist aber nicht ein 3D-Integral
über die Vollkugel, sondern nur ein 2D-Integral über die
Oberfläche (Sphäre) der Kugel gefragt.

LG  ,   Al-Chwarizmi

Bezug
                
Bezug
Integration im IR^{3}: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:34 Fr 16.01.2015
Autor: Topologe

Wow, danke. Hatte übersehen, dass es hier um die Sphäre geht.

Aber gibt es für die Gramsche Determinante einen Trick? Weil, da rechnet man sich ja dumm und dusselig in der Klausur (ist eine Klausuraufgabe).
Hab da nur die Definition gefunden: Die Jacobi-Matrix von [mm] \psi(\phi,\theta) [/mm] und deren Transponierte bilden, dann miteinander multiplizieren um auf eine quadratische Matrix zu kommen und schließlich die glorreiche Determinante berechnen:

Das wäre dann [mm] D\psi=\pmat{ -2sin(\phi)cos(\theta) & -2cos(\phi)sin(\theta) \\ 2cos(\phi)cos(\theta) & -2sin(\phi)sin(\theta) \\ 0 & 2cos(\theta) } [/mm]

Oder ist die Determinante vllt immer [mm] R^{2}cos(\theta)? [/mm] (R = Radius)

LG

Bezug
                        
Bezug
Integration im IR^{3}: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:47 Fr 16.01.2015
Autor: Topologe

Eines ist mir noch nicht ganz klar:

Die Grenzen beim 2. Integral: Warum im Intervall [mm] [-\bruch{\pi}{2},\bruch{\pi}{2}] [/mm] und nicht auch [mm] [0,2\pi]? [/mm]

LG

Bezug
                                
Bezug
Integration im IR^{3}: Antwort
Status: (Antwort) fertig Status 
Datum: 16:33 Fr 16.01.2015
Autor: Al-Chwarizmi


> Eines ist mir noch nicht ganz klar:
>  
> Die Grenzen beim 2. Integral: Warum im Intervall
> [mm][-\bruch{\pi}{2},\bruch{\pi}{2}][/mm] und nicht auch [mm][0,2\pi]?[/mm]


Das ist leicht zu beantworten. Stell dir das Ganze auf der
Erdoberfläche bzw. auf einem Globus vor, der mit einem
geografischen Koordinatennetz aus Breitenkreisen und
Längen - (Halb-) Kreisen bzw. Meridianen versehen ist.
Die Längenkoordinate läuft z.B. von [mm] -\pi [/mm] bis [mm] +\pi [/mm]  (oder
wenn du magst von 180° West bis 180° Ost. Zu jedem
in diesem Intervall (oder auch im Intervall
[0 ... 2 [mm] \pi [/mm] ] ) liegenden Winkel [mm] \phi [/mm] erstreckt sich ein
Meridian als Halbkreis vom Südpol bis zum Nordpol,
also von [mm] \theta [/mm] = -90° = - π/2  bis zu [mm] \theta [/mm] = +90° = + π/2 .

LG ,   Al-Chw.

Bezug
                        
Bezug
Integration im IR^{3}: Antwort
Status: (Antwort) fertig Status 
Datum: 17:04 Fr 16.01.2015
Autor: Al-Chwarizmi


> Gibt es für die Gramsche Determinante einen Trick?
> Weil, da rechnet man sich ja dumm und dusselig in der
> Klausur (ist eine Klausuraufgabe).
>  Hab da nur die Definition gefunden: Die Jacobi-Matrix von
> [mm]\psi(\phi,\theta)[/mm] und deren Transponierte bilden, dann
> miteinander multiplizieren um auf eine quadratische Matrix
> zu kommen und schließlich die glorreiche Determinante
> berechnen:
>  
> Das wäre dann [mm]D\psi=\pmat{ -2sin(\phi)cos(\theta) & -2cos(\phi)sin(\theta) \\ 2cos(\phi)cos(\theta) & -2sin(\phi)sin(\theta) \\ 0 & 2cos(\theta) }[/mm]
>  
> Oder ist die Determinante vllt immer [mm]R^{2}cos(\theta)?[/mm] (R =
> Radius)

Naja, was heißt schon "immer" ?

Falls es sich um ein Flächenstück handelt, das auf der
Oberfläche einer Kugel vom Radius R liegt:   Ja .

Im allgemeinen Fall einer beliebigen Fläche:  Nein.

Man könnte zwar ohne den Begriff der Gramschen
Determinante auskommen, wenn man das vektorielle
Flächenelement mittels Vektorprodukt aus den partiellen
Ableitungen berechnet:

    []Flächenelement

Das wird aber rechnerisch kaum einfacher.

LG  ,   Al-Chwarizmi

Bezug
                                
Bezug
Integration im IR^{3}: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:38 Sa 17.01.2015
Autor: Topologe

Ok, vielen Dank. Schon wieder ein wenig schlauer :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de