www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integration mit Substitution
Integration mit Substitution < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration mit Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:09 Mo 14.05.2012
Autor: Argot

Aufgabe
Berechnen sie folgendes Integral: [mm]\integral{\wurzel{1-t^2} dt}[/mm]

Substituieren Sie [mm]t = sin x[/mm].

Was ich gemacht habe:

[mm]\integral{\wurzel{1-t^2} dt} = \integral{\wurzel{1-sin^2(x)} dx} = \integral{\wurzel{cos^2(x)} dx} = \integral{cos(x) dx}[/mm]

Die Musterlösung hingegen spricht von:

[mm]\integral{\wurzel{1-t^2} dt} = \integral{cos^2(x)} dx}[/mm] und führt dann eine partielle Integration durch.

Habe ich einen Fehler gemacht oder ist die Musterlösung falsch?

        
Bezug
Integration mit Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 19:32 Mo 14.05.2012
Autor: Marcel

Hallo,

> Berechnen sie folgendes Integral: [mm]\integral{\wurzel{1-t^2} dt}[/mm]
>  
> Substituieren Sie [mm]t = sin x[/mm].
>  Was ich gemacht habe:
>  
> [mm]\integral{\wurzel{1-t^2} dt} = \integral{\wurzel{1-sin^2(x)} dx} = \integral{\wurzel{cos^2(x)} dx} = \integral{cos(x) dx}[/mm]
>  
> Die Musterlösung hingegen spricht von:
>  
> [mm]\integral{\wurzel{1-t^2} dt} = \integral{cos^2(x)} dx}[/mm] und
> führt dann eine partielle Integration durch.
>  
> Habe ich einen Fehler gemacht oder ist die Musterlösung
> falsch?

Du hast vergessen, das Differential anzupassen (Du kannst ja eine Funktion, die von [mm] $x\,$ [/mm] nach der Substitution abhängt, auch erstmal nur nach [mm] $x\,$ [/mm] integieren):
Also:
Aus [mm] $t=t(x)=\sin(x)$ [/mm] folgt [mm] $dt/dx=\cos(x)$ [/mm] bzw. [mm] $\red{dt}=\green{\cos(x)dx}\,.$ [/mm]

Somit folgt
[mm] $$\int \sqrt{1-t^2}dx=\int \sqrt{\cos^2(x)}\red{dt}=\int |\cos(x)|*\green{\cos(x)\,dx}$$ [/mm]

In der zweiten Gleichung siehst Du Deine Problematik: Es ist dort noch unklar, was [mm] $\int [/mm] f(x)dt$ ist, auch, wenn man dort [mm] $t=t(x)\,$ [/mm] hat.

P.S.
Ich habe übrigens die ein wenig allgemeiner gültige Formel [mm] $\sqrt{r^2}=|r|\,$ [/mm] für $r [mm] \in \IR$ [/mm] benutzt. Setzt man $r [mm] \ge [/mm] 0$ voraus, so gilt natürlich [mm] $\sqrt{r^2}=|r|=r\,.$ [/mm]  

Wenn man eine Stammfunktion finden will, macht das auch Sinn, die Ausgangsfunktion so einzuschränken, dass man nach der Substitution auch die Funktion [mm] $\cos(\cdot)$ [/mm] auf ein Intervall eingeschränkt hat, wo der durchgehend nichtnegativ ist (man könnte sich aber auch überlegen, dass es auch Sinn machen würde, wenn er auf einem passenden Intervall dann durchgehend nichtpositiv wäre).

Wenn man aber den HDI im Sinne der Lebesgueschen Integrationstheorie hat, wären solche Einschränkungen quasi-wurscht...

Gruß,
  Marcel

Bezug
                
Bezug
Integration mit Substitution: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:44 Di 15.05.2012
Autor: Argot

Super, vielen Dank. Der Beitrag hat mir sehr geholfen (vor allem beim nachschlagen und verstehen).

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de