www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integration per Substitution
Integration per Substitution < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration per Substitution: Hilfe, Tipp
Status: (Frage) beantwortet Status 
Datum: 17:29 Mi 12.10.2011
Autor: Balsam

Hallo, bei folgender Aufgabe benötige ich etwas Hilfe:

[mm] \integral_{1}^{2} [/mm] 1 / ( [mm] x^2 [/mm] +2) dx

Ich weiß, dass es einfacher ist, diese mit Partialbruchzerlegung zu lösen, jedoch würde ich gerne die Variante mit der Substitution wiederholen.

Kann ich jetzt einfach u= [mm] x^2 [/mm] +2x setzen? dann wäre u`=2x .
Wie ging man bei der Substitution noch vor?



        
Bezug
Integration per Substitution: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:30 Mi 12.10.2011
Autor: Balsam

die zu integrierende funktion lautet: 1/ [mm] x^2 [/mm] +2x , habe einen Fehler bei meiner mail vorhin bemerkt

Bezug
                
Bezug
Integration per Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 17:45 Mi 12.10.2011
Autor: schachuzipus

Hallo nochmal,


> die zu integrierende funktion lautet: 1/ [mm]x^2[/mm] +2x , habe
> einen Fehler bei meiner mail vorhin bemerkt

Hmm, dann vergiss die andere Antwort.

Faktorisieren und PBZ scheint der günstigste Weg.

Ansonsten bleibt quadrat. Ergänzung:

[mm] $\frac{1}{x^2+2x}=\frac{1}{x^2+2x+1-1}=\frac{1}{(x+1)^2-1}$ [/mm]

Wenn du nun [mm] $\int{\frac{1}{z^2-1} \ dz}$ [/mm] auswendig kennst, bist du mit der linearen Substitution $z=x+1$ schnell am Ziel.

Anderenfalls hilft auch hier entweder PBZ oder die Substitution [mm] $z=\tanh(u)$ [/mm]

Gruß

schachuzipus


Bezug
        
Bezug
Integration per Substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 17:40 Mi 12.10.2011
Autor: schachuzipus

Hallo Balsam,


> Hallo, bei folgender Aufgabe benötige ich etwas Hilfe:
>  
> [mm]\integral_{1}^{2}[/mm] 1 / ( [mm]x^2[/mm] +2) dx
>  
> Ich weiß, dass es einfacher ist, diese mit
> Partialbruchzerlegung zu lösen,

Das geht aber dann ins Komplexe, ob das dann wirklich einfacher ist, wage ich anzuzweifeln ...

> jedoch würde ich gerne
> die Variante mit der Substitution wiederholen.
>  
> Kann ich jetzt einfach u= [mm]x^2[/mm] +2x setzen?

Wieso [mm] $...2\red{x}$ [/mm] ??

> dann wäre u'=2x

Eher [mm]u'=2x+2[/mm]

Aber das wird nicht klappen. Auch, wenn du [mm] $u=x^2+2$ [/mm] meintest ...

Der Aufwand hängt davon ab, ob du weißt, was [mm]\int{\frac{1}{z^2+1} \ dz}[/mm] ist.

Wenn du weißt oder als bekannt voraussetzen darfst, dass das [mm]=\arctan(z)+C[/mm] ist, dann ist es nicht allzu schwer.

Klammere in deinem Ausgangsintegral mal die 2 im Nenner aus:

[mm]\int{\frac{1}{x^2+2} \ dx}=\int{\frac{1}{2\cdot{}\left[\left(\frac{x}{\sqrt{2}}\right)^2+1\right]} \ dx}=\frac{1}{2}\int{\frac{1}{\left(\frac{x}{\sqrt{2}}\right)^2+1} \ dx}[/mm]

Und dafür findest du im Hinblick auf das obige Stammintegral doch sicher eine Substitution, die dir das Integral in die Form des Stammintegrals bringt ...

Ansonsten löse zunächst mal [mm]\int{\frac{1}{z^2+1} \ dz}[/mm] mit der Substitution [mm]z=\tan(u)[/mm] ...

So geht man an das Stammintegral heran ...

> .
>  Wie ging man bei der Substitution noch vor?
>  
>  

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de