www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integration über log x
Integration über log x < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration über log x: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:06 Fr 23.05.2008
Autor: algieba

Aufgabe
[mm] \integral_{0}^{1}{log~ x ~~dx} [/mm]

Hi

dieses Beispiel hatten wir in der Vorlesung, und zwar mit dem folgenden Rechenweg:

[mm] \integral_{0}^{1}{log~ x ~~dx} = \limes_{x\rightarrow0} \integral_{x}^{1}{log~ x ~~dx}[/mm]

[mm]=1(log 1 - 1) - \limes_{x\rightarrow0} (x (log x - 1))[/mm]

[mm]=-1 - \limes_{x\rightarrow0} \bruch{log x}{\bruch{1}{x}} = -1 - \limes_{x\rightarrow0} \bruch{\bruch{1}{x}}{-\bruch{1}{x^2}} [/mm]

[mm]=-1 + \limes_{x\rightarrow0} x = -1[/mm]

Die Stammfunktion [mm] F(x) = x(log x -1)[/mm] hatten wir schon davor ausgerechnet.

Wenn ich die gleiche Aufgabe aber in den Taschenrechner eingebe kommt -0.4343 raus.

Wo ist denn hier der Fehler?

Vielen Dank




        
Bezug
Integration über log x: numerisch
Status: (Antwort) fertig Status 
Datum: 17:13 Fr 23.05.2008
Autor: Loddar

Hallo algieba!


Vorausgesetzt, Du hast es im TR auch korrekt eingegeben ... ;-)

Ich denke mal, dass es daran liegt, dass der TR derartige Integrale numerisch löst und daher auch gewisse Rundungsungenauigkeiten erzeugt.

Oder aber der TR hat vielleicht grundsätzlich Probleme mit derartigen uneigentlichen Integralen.


Gruß
Loddar


Bezug
                
Bezug
Integration über log x: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:00 Fr 23.05.2008
Autor: Al-Chwarizmi

hallo Loddar,

so krasse Rundungsfehler gibt's bei heutigen Taschenrechnern kaum mehr...     ;-)

Bezug
                        
Bezug
Integration über log x: Du hast Recht
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:04 Fr 23.05.2008
Autor: Loddar

Hallo Al-Chwarizmi!


Da muss ich Dir wohl in vollem Umfang Recht geben.

Mein TR hat mir wegen 0 als Integrationsgrenze auch gleich eine Fehlermeldung "spendiert".


Gruß
Loddar


Bezug
        
Bezug
Integration über log x: Basis ?
Status: (Antwort) fertig Status 
Datum: 17:55 Fr 23.05.2008
Autor: Al-Chwarizmi

Hallo algieba,

es kommt wohl nur auf die Basis des Logarithmus an !

Falls mit log der natürliche Logarithmus gemeint ist
(dann würde man aber sinnvollerweise  ln  statt  log
schreiben), dann ist  das Ergebnis  -1 .

Ist aber der Zehnerlogarithmus gemeint (die LOG -
Taste auf dem Taschenrechner steht für Zehner-
Logarithmus), dann ist das Ergebnis

[mm] \integral_{0}^{1}{log(x) dx} [/mm] =  [mm] \integral_{0}^{1}{\bruch{ln(x)}{ln(10)}dx} [/mm] = [mm] \bruch{1}{ln(10)}*\integral_{0}^{1}{ln(x) dx}= [/mm] -0.434294...

LG        al-Chwarizmi

Bezug
                
Bezug
Integration über log x: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:04 So 01.06.2008
Autor: algieba

Natürlich das meinte ich. Wie konnte ich das nur übersehen. Tja manchmal sieht man das Offensichtliche nicht. Bei uns ist mit log immer der natürliche Logarithmus gemeint.
Vielen Dank

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de